ON PRINCIPLES, METHODS AND AREAS OF MEDICAL AND BIOLOGICAL APPLICATION OF OPTICAL IMMUNOSENSORS
DOI:
https://doi.org/10.11603/mie.1996-1960.2018.2.9289Keywords:
biosensor, optical immunosensor, fluorescence, absorbanceAbstract
The article is devoted to research of the basic principles of design and physical and biological methods of use of optical immunosensors. We investigate the main application of optical immunosensors in biology and medicine including testing food quality, natural environment protection, medical diagnostics.
References
Tian, Y., Chen, Y., Song, D., Liu, X., Bi, S., Zhou, X., Cao, Y., & Zhang, H. (2005). Acousto-optictunable filter-surface plasmon resonance immunosensor for fibronectin. Analytica Chimica Acta, 551(1-2), 98-104. doi: 10.1016/j.aca.2005.07.017.
Liu T, Liang L. L., Xiao P., Sun, L. P., Huang, Y. Y., Ran, Y., Jin, L., & Guan, B. O. (2018). A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating. Biosensors and Bioelectronics, 100, 155-160. doi: 10.1016/j.bios.2017.08.061.
Alvarez, S., Li, C., Chiang, C., Shuller, I., & Sailor, M. (2009). A label-free porous alumina interferometric immunosensors. ASC Nano, 3, 3301-3307. doi: 10.1021/ nn900825q.
Viter, R., Savchuk, M., Iatsunskyi, I., Pietralik, Z., Starodub, N., Shpyrka, N., Ramanaviciene, A., Ramanavicius, A. (2018). Analytical, thermodynamical and kinetic characteristics of photoluminescence
immunosensor for the determination of Ochratoxin A. Biosensors and Bioelectronics, 99, 237-243. doi: 10.1016/j.bios.2017.07.056.
Guo, Y., Liu, R., Liu, Y., Xiang, D., Liu, Y., Gui, W., Li, M., & Zhu, G. (2018). A non-competitive surface plasmon resonance immunosensor for rapid detection of triazophos residue in environmental and agricultural samples. Science of The Total Environment, 613-614, 783-791. oi: 10.1016/j.scitotenv.2017.09.157.
Aoyagi, S., & Kudo, M. (2005). Development of fluorescence change-based, reagent-less optic immunosensor. Biosensors and Bioelectronics, 20(8), 1680-1684. doi: 10.1016/j.bios.2004.06.041.
Wang, J., Wang, J., Zhang, Z., Zhang, X., Ru, S., & Dong, Y. F. (2017). Development of an immunosensor for quantifying zebra fish vitellogenin based on the Octet system. Analytical Biochemistry, 533, 60-65. doi: 10.1016/j.ab.2017.07.005.
Driscoll, A. J., & Johnson, P. A. (2018). Numerical modeling of analyte diffusion and adsorption behavior in microparticle and nanoparticle based biosensors. Chemical Engineering Science, 184, 141-148. doi: 10.1016/j.ces.2018.03.010.
Yin, H., Xiao, R., Rong, Z., Jin, P., Ji, C., & Zhang, J. (2015). Establishment of evanescent wave fiber-optic immunosensor method for detection bluetongue virus. Methods, 90, 65-67. doi: 10.1016/j.ymeth.2015.05.007.
Chen, L. H., Chan, C. C., Menon, R., Balamurali, P., Wong, W. C., Ang, X. M., ... Leong, K. C. (2013). Fabry — Perot fiber-optic immunosensor based on suspended layer-by-layer (chitosan / polystyrene sulfonate) membrane. Sensors and Actuators B: Chemical, 188, 185-192. doi: 10.1016/j.snb.2013.06.093.
Oroszlan, P., Duveneck, G. L., Ehrat, M., & Widmer, H. M. (1993). Fiber-optic Atrazine immunosensor. Sensors and Actuators B: Chemical, 11(1-3), 301-305. doi: 10.1016/0925-4005(93)85268-F.
Betts, T. A., Catena, G. C., Huang, J., Litwiler, K. S., Zhang, J., Zagrobelny, J. A., & Bright, F. V. (1991). Fiber-optic-based immunosensors for haptens. Analytica Chimica Acta, 246(1), 55-63. doi: 10.1016/S0003-2670(00)80664-9.
Starodub, N. F., Arenkov, P. J., Starodub, A. N., & Berezin, V. A. (1994). Fiber optic immunosensors based on enhanced chemiluminescence and their application to determine different antigens. Sensors and Actuators B: Chemical, 18(1-3), 161-165. doi: 10.1016/0925-4005(94)87076-4.
Gaudin, V. (2017). Advances in biosensor development for the screening of antibiotic residues in food products of animal origin—A comprehensive review. Biosensors and Bioelectronics, 90, 363-377. doi: 10.1016/j. bios.2016.12.005.
Kios-Witkowska, A. (2016). The phenomenon of fluorescence inimmunosensors. Acta Biochimica Polonica, 63(2), 215-221, doi: 10.18388/abp.2015_1231.
Chen, L. H., Chan, C. C., Ni, K., Hu, P. B., Li, T., Wong, W. C., ... Leong, K. C. (2013). Label-free fiber-optic interferometric immunosensors based on waist-enlarged fusion taper. Sensors and Actuators B: Chemical, 178, 176-184. doi: 10.1016/j.snb.2012.12.071.
Martsenyuk, V. P., Klos-Witkowska, A., & Sverstyuk, A. S. (2018). Stability, bifurcation and transition to chaos in a model of immunosens or based on lattice differential equations with delay. Electronic Journal of Qualitative Theory of Differential Equations, 27, 1-31. doi: 10.14232/ejqtde.
Martsenyuk, V. P., Klos-Witkowska, A., & Sverstyuk, A. S. (2018). Study of classification of immunosensors from viewpoint of medical tasks. Medical informatics and engineering, 1(41), 13-19. doi: 10.11603/mie.1996-1960.2018.1.8887.
Hao, X., Zhou, X., Zhang, Y., Liu, L., Long, F., Song, L., & Shi, H. (2014). Melamine detection in dairy products by using a reusable evanescent wave fiberoptic biosensor. Sensors and Actuators B: Chemical, 204, 682-687. doi: 10.1016/j.snb.2014.08.023.
Jeong, Y., Kook, Y. M., Lee, K., & Koh, W. G. (2018). Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments. Biosensors and Bioelectronics, 111, 102-116. doi: 10.1016/j.bios.2018.04.007.
Aranda, P. R., Messina, G. A., Bertolino, F. A., Pereira, S. V., Fernandez Baldo, M. A., & Raba, J. (2018). Nanomaterials in fluorescent laser-based immunosensors: Review and applications. Microchemical Journal, 141, 308-323. doi: 10.1016/j.microc.2018.05.024.
Szekacs, A., Adanyi, N., Szekacs, I., & Szendro, I. (2009). Optical wave quite light-mode spectroscopy immunosensors for environmental monitoring. Apply Opt., 48, 151-158. doi: 10.1364/ A0.48.00B151.
Ye, K., Sinawang, P. D., Tok, A. I. Y., & Marks, R. S. (2018). Photoinducibles ilanediazirineasan effective crosslinker in the construction of a chemiluminescent immunosensor targeting a model E. coli analyte. Sensors and Actuators B: Chemical, 256, 234-242. doi: 10.1016/j.snb.2017.10.058.
Liu, X., Song, X., Dong, Z., Meng, X., Chen, Y., & Yang, L. (2017). Photonic crystal fiber-based immunosensor for high-performance detection of alphafetoprotein. Biosensors and Bioelectronics, 91, 431-435. doi: 10.1016/j.bios.2016.12.058.
Myndrul, V., Viter, R., Savchuk, M., Shpyrka, N., Erts, D., ... Iatsunskyi, I. (2018). Porous silicon based photoluminescence immunosensor for rapid and highly-sensitive detection of Ochratoxin A. Biosensors and Bioelectronics, 102, 661-667. doi: 10.1016/j. bios.2017.11.048.
Xing, W. L., Ma, L. R., Jiang, Z. H., Cao, F. H., & Jia, M. H. (2000). Portable fiber-optic immunosensor for detection of methsulfuronmethyl. Talanta, 52(5), 879-883. doi: 10.1016/S0039-9140(00)00440-9.
Ramirez, B., Salgado, A., & Valdman, B. (2009). The evolution and development of immunosensors for health and environmental monitoring: problems and perspectives. Brazilian J. Chem Eng., 26, 227-229.
Scholten, K., & Meng, E. (2018). A review of implantable biosensors for closed-loop glucose control and other drug delivery applications. International Journal of Pharmaceutics, 544(2), 319-334, doi: 10.1016/j. ijpharm.2018.02.022.
Shankaran, D., Gobi, H., & Miura, N. (2007). Recent advancements in surface plasmon resonance immunosensor for detection of small molecules of biomedical, food, enviromnetal interst. Sensors and Actuators B: Chemical, 121, 158-177. doi: 10.1016/j. snb.2006.09.014.
Sharma, A. K., Pandey, A. K., & Kaur, B. (2018). A review of advancements (2007-2017) in plasmonics-based optical fiber sensors. Optical Fiber Technology, 43, 20-34. doi: 10.1016/j.yofte.2018.03.008.
Bier, F. F., Stöcklein, W., Böcher, M., Bilitewski, U., & Schmid, R. D. (1992). Use of a fibreoptic immunosensor for the detection of pesticides. Sensors and Actuators B: Chemical, 7(1-3), 509-512. doi: 10.1016/09254005(92)80354-Z.
Downloads
Published
How to Cite
Issue
Section
License
Journal Medical Informatics and Engineering allows the author(s) to hold the copyright without registration
The majority of Medical Informatics and Engineering Open Access journals publish open access articles under the terms of the Creative Commons Attribution (CC BY) License which permits use, distribution and reproduction in any medium, provided the original work is properly cited. The remaining journals offer a choice of licenses.
This journal is available through Creative Commons (CC) License CC-BY 4.0