O. P. Mintser, T. Yu. Dubinina


Systematization of the relevant data of quantitative monitoring of the population of children with rare (orphan) diseases remains a difficult problem. When assessing the severity of the pathological condition and monitoring the response to therapy, the criteria and indices of activity of juvenile rheumatoid arthritis are introduced. Such tools are necessary for choosing therapeutic programs, forecasting the course of the disease, and assessing the risks to the patient. Determining the set of data elements for mathematical modeling tasks is the primary stage of this process.


information technology; rare diseases; juvenile rheumatoid arthritis; evaluation criteria; risks; monitoring.


Mintser, O. P., Banchuk, M. V., & Kharik, N. V.

(2013). Priinyattya medichnikh rishen' v umovakh rizikiv viniknennya informatsiinoi ta tekhnologichnoi singulyarnosti [Medical decision making in the face of the risk of information and technological singularity]. Sistemi pidtrimki priinyattya rishen'. Teoriya i praktika (Decision Support Systems. Theory and Practice), 100-103.

Peay, H. L., Hollin, I., Fischer, R., & Bridges, J. F.

(2014). A community-engaged approach to quantifying caregiver preferences for the benefits and risks of emerging therapies for Duchenne muscular dystrophy. Clin. Ther., 36(5), 624-637. doi: 10.1016/j. clinthera.2014.04.011.

Albrecht, G. L., & Devlieger, P. J. (1999). The disability

paradox: high quality of life against all odds. Soc. Sci. Med., 48(8), 977-988.

Saag, K. G., Teng, G. G., Patkar, N. M., Anuntiyo, J., Finney, C., Curtis, J. R., Paulus, H. E, ... Furst, D. E. (2008). American College of Rheumatology 2008 recommendations for the use of nonbiologic and biologic disease modifying antirheumatic drugs in rheumatoid arthritis. Arthritis Rheum., 59(6), 762-784. doi: 10.1002/ art.23721.

Coulson, E. J., Hanson. H. J. M., & Foster, H. E. (2014).

What does an adult rheumatologist need to know about juvenile idiopathic arthritis? Rheumatology, 53(12), 2155-2166. doi: 10.1093/rheumatology/keu257.

Jiang, G., Evans, J., Oniki, T. A., Coyle, J. F., Bain, L.,

Huff, S. M., Kush, R. D., & Chute, C. G. (2015). Harmonization of detailed clinical models with clinical study data standard. Methods Inf. Med., 54(1), 65-74. doi: 10.3414/ME13-02-0019.

Henrard S., & Arickx F. (2016). Negotiating prices of

drugs for rare diseases. Bull. World Health Organ., 94(10), 779-781. doi: 10.2471/BLT.15.163519.

Morèl, T., Aymé, S., Cassiman, D., Simoens, S., Morgan, M., & Vandebroek, M. (2016). Quantifying benefit-risk preferences for new medicines in rare disease patients and caregivers. Orphanet J. Rare Dis., 11(1), 70. doi: 10.1186/s13023-016-0444-9.

Rodwell, C., & Aymé, S. (2015). Rare disease policies

to improve care for patients in Europe. Biochim. Biophys. Acta., 1852(10), 2329-2335. doi: 10.1016/j. bbadis.2015.02.008.

Forrest, C. B., Bartek, R. J., Rubinstein, Y., & Groft, S. C. (2011). The case for a global rare-diseases registry. The Lancet, 377(9771), 1057-1059. doi: 10.1016/S0140-6736(10)60680-0.

Taruscio, D., Mollo, E., Gainotti, S., Posada de la Paz. M., Bianchi, F., & Vittozzi, L. (2014). The EPIRARE proposal of a set of indicators and common data elements for the European platform for rare disease registration. Arch. Public Health, 72(1), 35. doi: 10.1186/20493258-72-35.



  • There are currently no refbacks.

ISSN: 1996-1960
Open Archives Initiative