PROGNOSTICATION OF THE RISK OF SEVERE COVID-19 IN CHILDREN
DOI:
https://doi.org/10.11603/24116-4944.2024.2.15089Keywords:
COVID-19, vitamins, pro-inflammatory cytokines, mathematical modelAbstract
The aim of the study – to develop a prediction model that allows identifying children at high risk of developing severe COVID-19 and applying preventive measures in a timely manner.
Materials and Methods. A total of 112 children aged 1 month to 18 years with confirmed COVID-19 diagnoses were examined. The study was based on data on vitamins and cytokine levels in serum, determined using enzyme-linked immunosorbent assay (ELISA).
Results and Discussion. The model incorporated key predictors of severe COVID-19 progression: pro-inflammatory cytokines TNF-α and IL-6, as well as vitamins A, D, and B9. These parameters were significant for assessing the risk of severe disease in children, enabling effective risk stratification and adaptation of preventive measures.
Conclusions. The study confirmed the critical role of pro-inflammatory cytokines TNF-α and IL-6, along with the serum levels of vitamins A, D, and B9, in predicting the risk of severe COVID-19 in children. The developed mathematical model based on multiple logistic regression analysis provides high accuracy in identifying patients with an elevated risk of severe disease. This facilitates the timely implementation of preventive measures and individualized treatment, contributing to the reduction of severe COVID-19 cases in children and the optimization of medical resource utilization.
References
Miller, S., Aikawa, Y., Sugiyama, A., Nagai, Y., Hara, A., Oshima, T., Amaike, K., Kay, S. A., Itami, K., & Hirota, T. (2020). An Isoform-Selective Modulator of Cryptochrome 1 Regulates Circadian Rhythms in Mammals. Cell chemical biology, 27(9), 1192–1198.e5. DOI: 10.1016/j.chembiol.2020.05.008. DOI: https://doi.org/10.1016/j.chembiol.2020.05.008
Ludvigsson, J. F. (2020). Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta paediatrica, 109(6), 1088-1095. DOI: 10.1111/apa.15270. DOI: https://doi.org/10.1111/apa.15270
Grant, W. B., Lahore, H., McDonnell, S. L., Baggerly, C. A., French, C. B., Aliano, J. L., & Bhattoa, H. P. (2020). Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients, 12(4), 988. DOI: 10.3390/nu12040988. DOI: https://doi.org/10.3390/nu12040988
Zdrenghea, M. T., Makrinioti, H., Bagacean, C., Bush, A., Johnston, S. L., & Stanciu, L. A. (2017). Vitamin D modulation of innate immune responses to respiratory viral infections. Reviews in medical virology, 27(1), e1909. DOI: 10.1093/infdis/jix232. DOI: https://doi.org/10.1002/rmv.1909
Ilie, P. C., Stefanescu, S., & Smith, L. (2020). The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging clinical and experimental research, 32(7), 1195-1198. DOI: 10.1038/s41598-020-73571-7. DOI: https://doi.org/10.1007/s40520-020-01570-8
Martineau, A. R., Jolliffe, D. A., Greenberg, L. et al. (2017). Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis. BMJ, 356. DOI: 10.1136/bmj.i6583. DOI: https://doi.org/10.1136/bmj.i6583
Stephensen, C. B. (2001). Vitamin A, infection, and immune function. Annual review of nutrition, 21(1), 167-192. DOI: 10.1146/annurev.nutr.21.1.167. DOI: https://doi.org/10.1146/annurev.nutr.21.1.167
Shakoor, H., Feehan, J., Al Dhaheri, A. S. et al. (2021). Immune-Boosting Role of Vitamins D, C, E, Zinc, Selenium and Omega-3 Fatty Acids: Could They Help Against COVID-19? Frontiers in Immunology, 12, 634964. DOI: 10.3389/fimmu.2021.634964. DOI: https://doi.org/10.1016/j.maturitas.2020.08.003
Ablamunits, V., Lepsy, C. (2022). Blocking TNF signaling may save lives in COVID-19 infection. Molecular Biology Reports, 49(3), 2303-2309. DOI: 10.1007/s11033-022-07187-7. DOI: https://doi.org/10.1007/s11033-022-07166-x
Ganda, I. J., Putri, T. K. E., Rauf, S., Laompo, A., Pelupessy, N. M., Lawang, S. A., ... & Massi, M. N. (2023). IL-6 serum level, ARDS, and AKI as risk factors for the COVID-19 infection’s mortality in children. Plos one, 18(10), e0293639. DOI: 10.1371/journal.pone.0293639.
Musiienko, V., Sverstiuk, A., Lepyavko, A., Danchak, S., & Lisnianska, N. (2022). Prediction factors for the risk of diffuse non-toxic goiter development in type 2 diabetic patients. Polski merkuriusz lekarski: Organ Polskiego Towarzystwa Lekarskiego, 50(296), 94–98. PMID: 35436270. DOI: 10.36740/PM2022.50.29694
Chukur, O., Pasyechko, N., Bob, A., & Sverstiuk, A. (2022). Prediction of climacteric syndrome development in perimenopausal women with hypothyroidism. Przeglad Menopauzalny, 21(4), 236–241. DOI: 10.5114/pm.2022.123522 DOI: https://doi.org/10.5114/pm.2022.123522
Vaid, A., Somani, S., Russak, A. J., De Freitas, J. K., Chaudhry, F. F., Paranjpe, I., ... & Glicksberg, B. S. (2020). Machine learning to predict mortality and critical events in a cohort of patients with COVID-19 in New York City: model development and validation. Journal of medical Internet research, 22(11), e24018. DOI: 10.1038/s41746-020-00354-4. DOI: https://doi.org/10.2196/24018
Rossi, J. F., Chiang, H. C., Lu, Z. Y., Levon, K., van Rhee, F., Kanhai, K., ... & Klein, B. (2021). Association between Insufficient Interleukin-6 (IL-6) Inhibition and Worsening Outcomes in COVID-19 and Idiopathic Multicentric Castleman Disease (iMCD), and a Mathematical Model to Predict Optimal Dosing to Completely Block IL-6 Activity. Blood, 138, 4004. DOI: 10.1182/blood-2021-150433. DOI: https://doi.org/10.1182/blood-2021-150433
Chen, L. D., Hu, L., Song, Y., Huang, Y. P., Yang, S. J., Yang, J., & Zhang, X. B. (2022). Role of serum IL-6 and TNF-α in coronavirus disease 2019 (COVID-19) associated renal impairment. European Journal of Inflammation, 20, 1721727X221126117. DOI: 10.1177/1721727X221126117. DOI: https://doi.org/10.1177/1721727X221126117
Yupari-Azabache, I., Bardales-Aguirre, L., Rodriguez-Azabache, J., Barros-Sevillano, J. S., & Rodríguez-Diaz, A. (2021). COVID-19 mortality risk factors in hospitalized patients: A logistic regression model. Revista de la Facultad de Medicina Humana, 21(1), 19–27. DOI 10.25176/RFMH.v21i1.3264 DOI: https://doi.org/10.25176/RFMH.v21i1.3264
Abu Shanap, M., Sughayer, M., Alsmadi, O., Elzayat, I., Al-Nuirat, A., Tbakhi, A., & Sultan, I. (2022). Factors that predict severity of infection and seroconversion in immunocompromised children and adolescents with COVID-19 infection. Frontiers in Immunology, 13, 919762. DOI: 10.3389/fimmu.2022.919762. DOI: https://doi.org/10.3389/fimmu.2022.919762
Yang, Q., Li, J., Zhang, Z., Wu, X., Liao, T., Yu, S., ... & Sun, J. (2021). Clinical characteristics and a decision tree model to predict death outcome in severe COVID-19 patients. BMC infectious diseases, 21, 1-9. DOI: 10.1186/s12879-021-05810-z. DOI: https://doi.org/10.1186/s12879-021-06478-w
Kass, D. A., Duggal, P., & Cingolani, O. (2020). Obesity could shift severe COVID-19 disease to younger ages. The Lancet, 395(10236), 1544-1545. DOI: 10.1016/S0140-6736(20)31024-2. DOI: https://doi.org/10.1016/S0140-6736(20)31024-2
Tagarro, A., Epalza, C., Santos, M. et al. (2021). Screening and severity of coronavirus disease 2019 (COVID-19) in children in Madrid, Spain. JAMA pediatrics, 175(3), 316-317. DOI: 10.1001/jamapediatrics.2020.1346. DOI: https://doi.org/10.1001/jamapediatrics.2020.1346
Ganda, I. J., Putri, T. K. E. R., Rauf, S., Laompo, A., Pelupessy, N. M., Lawang, S. A., & Massi, M. N. (2023). IL-6 serum level, ARDS, and AKI as risk factors for the COVID-19 infection’s mortality in children. PLOS ONE, 18(10), e0293639. DOI: 10.1371/journal.pone.0293639 DOI: https://doi.org/10.1371/journal.pone.0293639
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Г. А. Павлишин, О. В. Лабівка

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms:
1. The authors reserve the right to authorship of the work and pass the journal right of first publication of this work is licensed under a Creative Commons Attribution License, which allows others to freely distribute the work published with reference to the authors of the original work and the first publication of this magazine.
2. Authors are entitled to enter into a separate agreement on additional non-exclusive distribution of work in the form in which it was published in the magazine (eg work place in the electronic repository institution or publish monographs in part), provided that the reference to the first publication of this magazine.
3. Policy magazine allows and encourages authors placement on the Internet (eg, in storage facilities or on personal websites) manuscript of how to submit the manuscript to the editor and during his editorial processing, since it contributes to productive scientific discussion and positive impact on the efficiency and dynamics of citing published work (see. The Effect of Open Access).