APPLICATION OF DIAGNOSTIC TESTS IN THE EARLY INTERVENTION PROGRAM TO IDENTIFY DEPRIVATION OF MOTOR DEVELOPMENT
(LITERATURE REVIEW)
DOI:
https://doi.org/10.11603/24116-4944.2021.2.12681Keywords:
early intervention, developmental assessment, tests for early diagnosis of motor disordersAbstract
The aim of the study – a systematic review of available data for early accurate diagnosis of motor disorders. Motor development reflects the pattern of neurological development. Movements progress from primitive, chaotic to freely controlled movements, so childrenʼs competence in motor skills is one of the important indicators of health, because if a child is physically active in early childhood, the likelihood of many chronic diseases in adulthood will be reduced. Diagnosis of motor skills developmental delay in the first year of life is important because it often indicates more general developmental delays or specific disorders such as cerebral palsy. The article analyzed 10 well-known tests for early diagnosis of motor disorders. Early diagnosis of motor disorders allows children to access early intervention in a timely manner.
References
Martyniuk, V.Yu. (2014). Diahnostychni kryterii rukhovykh porushen u nemovliat iz pozytsii dokazovoi medytsyny [Diagnostic criteria for motor disorders in infants from the standpoint of evidence-based medicine]. Mizhnarodnyi nevrolohichnyi zhurnal – International Journal of Neurology, 3, 164-165 [in Ukrainian].
Block, R.W., Dreyer, B.P., Cohen, A.R., Stapleton, F.B., Furth, S.L., & Bucciarelli, R.L. (2013). An agenda for children for the 113th Congress: recommendations from the Pediatric Academic Societies. Pediatrics, 131 (1), 109-119. DOI: 10.1542/peds.2012-2661.
Raghupathy, M.K., Rao, B.K., Nayak, S.R., Spittle, A.J., & Parsekar, S.S. (2021). Effect of family-centered care interventions on motor and neurobehavior development of very preterm infants: a protocol for systematic review. Syst. Rev., 10 (1), 1-8. DOI: 10.1186/s13643-021-01612-w.
Shepherd, E., Salam, R.A., Middleton, P., Han, S., Makrides, M., McIntyre, S., …, & Crowther, C.A. (2018). Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews. Cochrane Database Syst. Rev., 20, 6. DOI: 10.1002/14651858.
Novak, I., Morgan, C., Adde, L., Blackman, J., Boyd, R.N., Brunstrom-Hernandez, J., …, & Badawi, N. (2017). Early, Accurate Diagnosis and Early Intervention in Cerebral Palsy: Advances in Diagnosis and Treatment. JAMA Pediatr., 171 (9), 897-907. DOI: 10.1001/jamapediatrics.2017.1689.
Morgan, C., Fahey, M., Roy, B., & Novak, I. (2018). Diagnosing cerebral palsy in full-term infants. J. Paediatr. Child Health., 54 (10), 1159-1164. DOI: 10.1111/jpc.14177.
Campbell, S.K., Wright, B.D., & Linacre, J.M. (2002). Development of a functional movement scale for infants. J. Appl. Meas., 3 (2), 190-204.
Ellison, P.H., Horn, J.L., & Browning, C.A. (1985). Construction of an Infant Neurological International Battery (INFANIB) for the assessment of neurological integrity in infancy. Phys. Ther., 65 (9), 1326-1331. DOI: 10.1093/ptj/65.9.1326.
Liao, W., Wen, E.Y., Li, C., Chang, Q., Lv, K.L., Yang, W., …, & Zhao, C.M. (2012). Predicting neurodevelopmental outcomes for at-risk infants: reliability and predictive validity using a Chinese version of the INFANIB at 3, 7 and 10 months. BMC Pediatrics, 12 (1), 72. DOI: 10.1186/1471-2431-12-72.
Sung, I.Y., & Kang, W. (1997). Infant neurological international battery (INFANIB) as a predictor of neuromotor outcome in risk infants. J. Korean Acad. Rehab. Med., 21 (2), 406-413.
Fuentefria, R.D.N., Silveira, R.C., & Procianoy, R.S. (2017). Motor development of preterm infants assessed by the Alberta Infant Motor Scale: systematic review article. J. Pediatr. (Rio J)., 93 (4), 328-342. DOI: 10.1016/j.jped.2017.03.003.
Campbell, S.K., Kolobe, T.H., Wright, B.D., & Linacre, J.M. (2002). Validity of the Test of Infant Motor Performance for prediction of 6-, 9- and 12-month scores on the Alberta Infant Motor Scale. Dev. Med. Child. Neurol., 44 (4), 263-272. DOI: 10.1017/s0012162201002043.
Piper, M.C., Pinnell, L.E., Darrah, J., Maguire, T., & Byrne, P.J. (1992). Construction and validation of the Alberta Infant Motor Scale (AIMS). J Public Health., 83, 46-50.
Seesahai, J., Luther, M., Church, P.T., Maddalena, P., Asztalos, E., Rotter, T., & Banihani, R. (2021). The assessment of general movements in term and late-preterm infants diagnosed with neonatal encephalopathy, as a predictive tool of cerebral palsy by 2 years of age-a scoping review. Syst. Rev., 10 (1), 226. DOI: 10.1186/s13643-021-01765-8.
Prechtl, H.F. (2001). General movement assessment as a method of developmental neurology: new paradigms and their consequences. The 1999 Ronnie MacKeith lecture. Dev. Med. Child. Neurol., 43, 836-842. DOI: 10.1017/s0012162201001529.
Kwong, A.K.L., Fitzgerald, T.L., Doyle, L.W., Cheong, J.L.Y., & Spittle, A.J. (2018). Predictive validity of spontaneous early infant movement for later cerebral palsy: a systematic review. Dev. Med. Child. Neurol., 60 (5), 480-489. DOI: 10.1111/dmcn.13697.
Hamer, E.G., Bos, A.F., & Hadders-Algra, M. (2016). Specific characteristics of abnormal general movements are associated with functional outcome at school age. Early Hum. Dev., 95, 9-13. DOI: 10.1016/j.earlhumdev.2016.01.019.
Campbell, S.K. (2021). Functional movement assessment with the Test of Infant Motor Performance. J. Perinatol., 41 (10), 2385-2394. DOI: 10.1038/s41372-021-01060-3.
Bosanquet, M., Copeland, L., Ware, R., & Boyd, R. (2013). A systematic review of tests to predict cerebral palsy in young children. Dev. Med. Child. Neurol., 55 (5), 418-426. DOI: 10.1111/dmcn.12140.
Aizawa, C.Y., Einspieler, C., Genovesi, F.F., Ibidi, S.M., & Hasue, R.H. (2021). The general movement checklist: A guide to the assessment of general movements during preterm and term age. J. Pediatr., 97, 445-452. DOI: 10.1016/j.jped.2020.09.006.
Romeo, D.M., Ricci, D., Brogna, C., & Mercuri, E. (2016). Use of the Hammersmith Infant Neurological Examination in infants with cerebral palsy: a critical review of the literature. Dev. Med. Child. Neurol., 58 (3), 240-245. DOI: 10.1111/dmcn.12876.
Romeo, D.M., Cowan, F.M., Haataja, L., Ricci, D., Pede, E., Gallini, F., …, & Mercuri, E. (2021). Hammersmith Infant Neurological Examination for infants born preterm: predicting outcomes other than cerebral palsy. Dev. Med. Child. Neurol., 63 (8), 939-946. DOI: 10.1111/dmcn.14768.
Uusitalo, K., Haataja, L., Nyman, A., Lehtonen, T., & Setänen, S. (2021). Hammersmith Infant Neurological Examination and long-term cognitive outcome in children born very preterm. Dev. Med. Child. Neurol., 63 (8), 947-953. DOI: 10.1111/dmcn.14873.
Rahlin, M., Rheault, W., & Cech, D. (2003). Evaluation of the primary subtests of toddler and infant motor evaluation: implications for clinical practice in pediatric physical therapy. Pediatr. Phys. Ther., 15 (3), 176-183. DOI: 10.1097/01.PEP.0000083080.76458.78.
Del Rosario, C., Slevin, M., Molloy, E.J., Quigley, J., & Nixon, E. (2021). How to use the Bayley Scales of infant and toddler development. Arch. Dis. Child. Educ. Pract. Ed., 106 (2), 108-112. DOI: 10.1136/archdischild-2020-319063.
Anderson, P.J., & Burnett, A. (2017). Assessing developmental delay in early childhood - concerns with the Bayley-III scales. Clin. Neuropsychol., 31 (2), 371-381. DOI: 10.1080/13854046.2016.1216518.
Lowe, J.R., Erickson, S.J., Schrader, R., & Duncan, A.F. (2012). Comparison of the Bayley II mental developmental index and the Bayley III cognitive scale: are we measuring the same thing? Acta Paediatr., 101 (2), 55-58. DOI: 10.1111/j.1651-2227.2011.02517.x.
Harris, S.R., & Daniels, L.E. (2001). Reliability and validity of the Harris Infant Neuromotor Test. J. Pediatr., 139 (2), 249-253. DOI: 10.1067/mpd.2001.115896.
Harris, S.R. (2016). Early identification of motor delay: Family-centred screening tool. Can. Fam. Physician., 62 (8), 629-632.
Holloway, J.M., Long, T.M., & Biasini, F. (2018). Relationships between gross motor skills and social function in young boys with an autism spectrum disorder. Pediatr. Phys. Ther., 30 (3), 184-190. DOI: 10.1097/PEP.0000000000000505.
Karimi, H., Aliabadi, F., Hosseini Jam, M., & Afsharkhas, L. (2016). Evaluation of motor skills in high-risk infants based on Peabody Developmental Motor Scales (PDMS-2). Int. J. Child. Adolesc., 2 (1), 4-7.
Clutterbuck, G.L., Auld, M.L., & Johnston, L.M. (2020). High‐level motor skills assessment for ambulant children with cerebral palsy: a systematic review and decision tree. Dev. Med. Child Neurol., 62 (6), 693-699. DOI: 10.1111/dmcn.14524.
Tavasoli, A., Azimi, P., & Montazari, A. (2014). Reliability and validity of the Peabody Developmental Motor Scales-for assessing motor development of low birth weight preterm infants. Pediatr. Neurol., 51 (4), 522-526. DOI: 10.1016/j.pediatrneurol.2014.06.010.
Wang, M., Mei, H., Liu, C., Zhang, Y., Huixian, L.I., & Yan, F. (2017). Application of the Peabody developmental motor scale in the assessment of neurodevelopmental disorders in premature infants. Chin. Pediatr. Emerg. Med., 24 (10), 760-763.
Dourou, E., Komessariou, A., Riga, V., & Lavidas, K. (2017). Assessment of gross and fine motor skills in preschool children using the Peabody Developmental Motor Scales Instrument. Eur. Psychomotricity J., 9, 89-113.
Wood, E., & Rosenbaum, P. (2000). The gross motor function classification system for cerebral palsy: a study of reliability and stability over time. Dev. Med. Child Neurol., 42 (5), 292-296. DOI: 10.1017/s0012162200000529.
Palisano, R.J., Rosenbaum, P., Bartlett, D., & Livingston, M.H. (2008). Content validity of the expanded and revised Gross Motor Function Classification System. Dev. Med. Child. Neurol., 50 (10), 744-750. DOI: 10.1111/j.1469-8749.2008.03089.x.
Towns, M., Rosenbaum, P., Palisano, R., & Wright, F.V. (2018). Should the Gross Motor Function Classification System be used for children who do not have cerebral palsy? Dev. Med. Child. Neurol., 60 (2), 147-154. DOI: 10.1111/dmcn.13602.
Piscitelli, D., Ferrarello, F., Ugolini, A., Verola, S., & Pellicciari, L. (2021). Measurement properties of the Gross Motor Function Classification System, Gross Motor Function Classification System-Expanded & Revised, Manual Ability Classification System, and Communication Function Classification System in cerebral palsy: a systematic review with meta-analysis. Dev. Med. Child. Neurol., 63 (11), 1251-1261. DOI: 10.1111/dmcn.14910.
Martyniuk, V.Yu. (2014). Diahnostychni kryterii rukhovykh porushen u nemovliat iz pozytsii dokazovoi medytsyny [Diagnostic criteria for motor disorders in infants from the standpoint of evidence-based medicine]. Mizhnarodnyi nevrolohichnyi zhurnal – International Journal of Neurology, 3, 164-165 [in Ukrainian].
Block, R.W., Dreyer, B.P., Cohen, A.R., Stapleton, F.B., Furth, S.L., & Bucciarelli, R.L. (2013). An agenda for children for the 113th Congress: recommendations from the Pediatric Academic Societies. Pediatrics, 131 (1), 109-119. DOI: 10.1542/peds.2012-2661.
Raghupathy, M.K., Rao, B.K., Nayak, S.R., Spittle, A.J., & Parsekar, S.S. (2021). Effect of family-centered care interventions on motor and neurobehavior development of very preterm infants: a protocol for systematic review. Syst. Rev., 10 (1), 1-8. DOI: 10.1186/s13643-021-01612-w.
Shepherd, E., Salam, R.A., Middleton, P., Han, S., Makrides, M., McIntyre, S., …, & Crowther, C.A. (2018). Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews. Cochrane Database Syst. Rev., 20, 6. DOI: 10.1002/14651858.
Novak, I., Morgan, C., Adde, L., Blackman, J., Boyd, R.N., Brunstrom-Hernandez, J., …, & Badawi, N. (2017). Early, Accurate Diagnosis and Early Intervention in Cerebral Palsy: Advances in Diagnosis and Treatment. JAMA Pediatr., 171 (9), 897-907. DOI: 10.1001/jamapediatrics.2017.1689.
Morgan, C., Fahey, M., Roy, B., & Novak, I. (2018). Diagnosing cerebral palsy in full-term infants. J. Paediatr. Child Health., 54 (10), 1159-1164. DOI: 10.1111/jpc.14177.
Campbell, S.K., Wright, B.D., & Linacre, J.M. (2002). Development of a functional movement scale for infants. J. Appl. Meas., 3 (2), 190-204.
Ellison, P.H., Horn, J.L., & Browning, C.A. (1985). Construction of an Infant Neurological International Battery (INFANIB) for the assessment of neurological integrity in infancy. Phys. Ther., 65 (9), 1326-1331. DOI: 10.1093/ptj/65.9.1326.
Liao, W., Wen, E.Y., Li, C., Chang, Q., Lv, K.L., Yang, W., …, & Zhao, C.M. (2012). Predicting neurodevelopmental outcomes for at-risk infants: reliability and predictive validity using a Chinese version of the INFANIB at 3, 7 and 10 months. BMC Pediatrics, 12 (1), 72. DOI: 10.1186/1471-2431-12-72.
Sung, I.Y., & Kang, W. (1997). Infant neurological international battery (INFANIB) as a predictor of neuromotor outcome in risk infants. J. Korean Acad. Rehab. Med., 21 (2), 406-413.
Fuentefria, R.D.N., Silveira, R.C., & Procianoy, R.S. (2017). Motor development of preterm infants assessed by the Alberta Infant Motor Scale: systematic review article. J. Pediatr. (Rio J)., 93 (4), 328-342. DOI: 10.1016/j.jped.2017.03.003.
Campbell, S.K., Kolobe, T.H., Wright, B.D., & Linacre, J.M. (2002). Validity of the Test of Infant Motor Performance for prediction of 6-, 9- and 12-month scores on the Alberta Infant Motor Scale. Dev. Med. Child. Neurol., 44 (4), 263-272. DOI: 10.1017/s0012162201002043.
Piper, M.C., Pinnell, L.E., Darrah, J., Maguire, T., & Byrne, P.J. (1992). Construction and validation of the Alberta Infant Motor Scale (AIMS). J Public Health., 83, 46-50.
Seesahai, J., Luther, M., Church, P.T., Maddalena, P., Asztalos, E., Rotter, T., & Banihani, R. (2021). The assessment of general movements in term and late-preterm infants diagnosed with neonatal encephalopathy, as a predictive tool of cerebral palsy by 2 years of age-a scoping review. Syst. Rev., 10 (1), 226. DOI: 10.1186/s13643-021-01765-8.
Prechtl, H.F. (2001). General movement assessment as a method of developmental neurology: new paradigms and their consequences. The 1999 Ronnie MacKeith lecture. Dev. Med. Child. Neurol., 43, 836-842. DOI: 10.1017/s0012162201001529.
Kwong, A.K.L., Fitzgerald, T.L., Doyle, L.W., Cheong, J.L.Y., & Spittle, A.J. (2018). Predictive validity of spontaneous early infant movement for later cerebral palsy: a systematic review. Dev. Med. Child. Neurol., 60 (5), 480-489. DOI: 10.1111/dmcn.13697.
Hamer, E.G., Bos, A.F., & Hadders-Algra, M. (2016). Specific characteristics of abnormal general movements are associated with functional outcome at school age. Early Hum. Dev., 95, 9-13. DOI: 10.1016/j.earlhumdev.2016.01.019.
Campbell, S.K. (2021). Functional movement assessment with the Test of Infant Motor Performance. J. Perinatol., 41 (10), 2385-2394. DOI: 10.1038/s41372-021-01060-3.
Bosanquet, M., Copeland, L., Ware, R., & Boyd, R. (2013). A systematic review of tests to predict cerebral palsy in young children. Dev. Med. Child. Neurol., 55 (5), 418-426. DOI: 10.1111/dmcn.12140.
Aizawa, C.Y., Einspieler, C., Genovesi, F.F., Ibidi, S.M., & Hasue, R.H. (2021). The general movement checklist: A guide to the assessment of general movements during preterm and term age. J. Pediatr., 97, 445-452. DOI: 10.1016/j.jped.2020.09.006.
Romeo, D.M., Ricci, D., Brogna, C., & Mercuri, E. (2016). Use of the Hammersmith Infant Neurological Examination in infants with cerebral palsy: a critical review of the literature. Dev. Med. Child. Neurol., 58 (3), 240-245. DOI: 10.1111/dmcn.12876.
Romeo, D.M., Cowan, F.M., Haataja, L., Ricci, D., Pede, E., Gallini, F., …, & Mercuri, E. (2021). Hammersmith Infant Neurological Examination for infants born preterm: predicting outcomes other than cerebral palsy. Dev. Med. Child. Neurol., 63 (8), 939-946. DOI: 10.1111/dmcn.14768.
Uusitalo, K., Haataja, L., Nyman, A., Lehtonen, T., & Setänen, S. (2021). Hammersmith Infant Neurological Examination and long-term cognitive outcome in children born very preterm. Dev. Med. Child. Neurol., 63 (8), 947-953. DOI: 10.1111/dmcn.14873.
Rahlin, M., Rheault, W., & Cech, D. (2003). Evaluation of the primary subtests of toddler and infant motor evaluation: implications for clinical practice in pediatric physical therapy. Pediatr. Phys. Ther., 15 (3), 176-183. DOI: 10.1097/01.PEP.0000083080.76458.78.
Del Rosario, C., Slevin, M., Molloy, E.J., Quigley, J., & Nixon, E. (2021). How to use the Bayley Scales of infant and toddler development. Arch. Dis. Child. Educ. Pract. Ed., 106 (2), 108-112. DOI: 10.1136/archdischild-2020-319063.
Anderson, P.J., & Burnett, A. (2017). Assessing developmental delay in early childhood - concerns with the Bayley-III scales. Clin. Neuropsychol., 31 (2), 371-381. DOI: 10.1080/13854046.2016.1216518.
Lowe, J.R., Erickson, S.J., Schrader, R., & Duncan, A.F. (2012). Comparison of the Bayley II mental developmental index and the Bayley III cognitive scale: are we measuring the same thing? Acta Paediatr., 101 (2), 55-58. DOI: 10.1111/j.1651-2227.2011.02517.x.
Harris, S.R., & Daniels, L.E. (2001). Reliability and validity of the Harris Infant Neuromotor Test. J. Pediatr., 139 (2), 249-253. DOI: 10.1067/mpd.2001.115896.
Harris, S.R. (2016). Early identification of motor delay: Family-centred screening tool. Can. Fam. Physician., 62 (8), 629-632.
Holloway, J.M., Long, T.M., & Biasini, F. (2018). Relationships between gross motor skills and social function in young boys with an autism spectrum disorder. Pediatr. Phys. Ther., 30 (3), 184-190. DOI: 10.1097/PEP.0000000000000505.
Karimi, H., Aliabadi, F., Hosseini Jam, M., & Afsharkhas, L. (2016). Evaluation of motor skills in high-risk infants based on Peabody Developmental Motor Scales (PDMS-2). Int. J. Child. Adolesc., 2 (1), 4-7.
Clutterbuck, G.L., Auld, M.L., & Johnston, L.M. (2020). High‐level motor skills assessment for ambulant children with cerebral palsy: a systematic review and decision tree. Dev. Med. Child Neurol., 62 (6), 693-699. DOI: 10.1111/dmcn.14524.
Tavasoli, A., Azimi, P., & Montazari, A. (2014). Reliability and validity of the Peabody Developmental Motor Scales-for assessing motor development of low birth weight preterm infants. Pediatr. Neurol., 51 (4), 522-526. DOI: 10.1016/j.pediatrneurol.2014.06.010.
Wang, M., Mei, H., Liu, C., Zhang, Y., Huixian, L.I., & Yan, F. (2017). Application of the Peabody developmental motor scale in the assessment of neurodevelopmental disorders in premature infants. Chin. Pediatr. Emerg. Med., 24 (10), 760-763.
Dourou, E., Komessariou, A., Riga, V., & Lavidas, K. (2017). Assessment of gross and fine motor skills in preschool children using the Peabody Developmental Motor Scales Instrument. Eur. Psychomotricity J., 9, 89-113.
Wood, E., & Rosenbaum, P. (2000). The gross motor function classification system for cerebral palsy: a study of reliability and stability over time. Dev. Med. Child Neurol., 42 (5), 292-296. DOI: 10.1017/s0012162200000529.
Palisano, R.J., Rosenbaum, P., Bartlett, D., & Livingston, M.H. (2008). Content validity of the expanded and revised Gross Motor Function Classification System. Dev. Med. Child. Neurol., 50 (10), 744-750. DOI: 10.1111/j.1469-8749.2008.03089.x.
Towns, M., Rosenbaum, P., Palisano, R., & Wright, F.V. (2018). Should the Gross Motor Function Classification System be used for children who do not have cerebral palsy? Dev. Med. Child. Neurol., 60 (2), 147-154. DOI: 10.1111/dmcn.13602.
Piscitelli, D., Ferrarello, F., Ugolini, A., Verola, S., & Pellicciari, L. (2021). Measurement properties of the Gross Motor Function Classification System, Gross Motor Function Classification System-Expanded & Revised, Manual Ability Classification System, and Communication Function Classification System in cerebral palsy: a systematic review with meta-analysis. Dev. Med. Child. Neurol., 63 (11), 1251-1261. DOI: 10.1111/dmcn.14910.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Actual Problems of Pediatrics, Obstetrics and Gynecology
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms:
1. The authors reserve the right to authorship of the work and pass the journal right of first publication of this work is licensed under a Creative Commons Attribution License, which allows others to freely distribute the work published with reference to the authors of the original work and the first publication of this magazine.
2. Authors are entitled to enter into a separate agreement on additional non-exclusive distribution of work in the form in which it was published in the magazine (eg work place in the electronic repository institution or publish monographs in part), provided that the reference to the first publication of this magazine.
3. Policy magazine allows and encourages authors placement on the Internet (eg, in storage facilities or on personal websites) manuscript of how to submit the manuscript to the editor and during his editorial processing, since it contributes to productive scientific discussion and positive impact on the efficiency and dynamics of citing published work (see. The Effect of Open Access).