THE INTERPLAY OF GLUTAMATE-ASPARTATE SIGNALING AND THE NITRIC OXIDE SYSTEM: MOLECULAR MECHANISMS, PHYSIOLOGICAL FUNCTIONS, PATHOLOGICAL CONSEQUENCES, AND THERAPEUTIC INTERVENTIONS
DOI:
https://doi.org/10.11603/mcch.2410-681X.2025.i4.15928Keywords:
Nitric Oxide (NO); Glutamate; NMDA-receptor; Excitotoxicity; neuronal NO synthase (nNOS).Abstract
Introduction. The interaction between the excitatory amino acid (EAA) system (L-glutamate, L-aspartate) and the nitric oxide (NO) system is a fundamental signaling cascade in mammals. It functions as a “double-edged sword”, defining the boundary between physiological adaptation and pathological damage. The Aim of the Study. To conduct a comprehensive, interdisciplinary analysis and to systematize current data on the molecular mechanisms, physiological and pathological roles, and therapeutic potential of the glutamate- NO signaling pathway. Results and Discussion. The central integrative event is the activation of the ionotropic NMDA-receptor (NMDAR), which triggers calcium-dependent NO synthesis by neuronal NO synthase (nNOS). Under physiological conditions, this cascade is essential for synaptic plasticity (LTP), neurovascular coupling, and peripheral regulation (e.g., in the GIT). However, its overactivation during ischemia, trauma, and neuroinflammation initiates the mechanism of excitotoxicity. This review provides a detailed analysis of key pathogenetic links: (1) the conversion of NO into the highly toxic peroxynitrite; (2) the role of inducible iNOS in neuroinflammation; (3) the phenomenon of nNOS “uncoupling” due to deficiency of its cofactor BH4; and (4) the critical role of the GluN2B-PSD-95- nNOS supramolecular complex as a “pro-death” signal target. The pathological role of the cascade in stroke, neurodegenerative diseases (Alzheimer’s, Parkinson’s), and the formation of chronic pain is discussed. Conclusions. The clinical failures of non-selective NMDAR antagonists are analyzed, justifying the shift in therapeutic strategies toward “fine-tuning” modulation. Promising approaches include selective GluN2B subunit antagonists, ONOO- scavengers, nNOS stabilizers, and innovative peptides that disrupt the pathological PSD-95/ nNOS interaction. Understanding this cascade remains a priority for developing new treatments for neurological and somatic disorders.
References
Furchgott R. F., Ignarro L. J., Murad F. The Nobel Prize in Physiology or Medicine 1998. NobelPrize. org. 1998. URL: https://www.nobelprize.org/prizes/ medicine/1998/summary/ (дата звернення: 05.11.2025).
Garthwaite J. Concepts of neural nitric oxide-mediated transmission. European Journal of Neuroscience. 2008. Vol. 27. № 11. P. 2783–2802. DOI: 10.1111/j.1460-9568.2008.06285.x
Watkins J. C., Evans R. H. Excitatory amino acid transmitters. Annual Review of Pharmacology and Toxicology. 1981. Vol. 21. № 1. P. 165–204. DOI: 10.1146/ annurev.pa.21.040181.001121
Garthwaite J., Charles S. L., Chess- Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature. 1988. Vol. 336. № 6197. P. 385–388. DOI: 10.1038/336385a0
Hardingham G. E., Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nature Reviews Neuroscience. 2010. Vol. 11. № 10. P. 682–696. DOI: 10.1038/nrn2911
Attwell D., Buchan A. M., Charpak S. et al. Glial and neuronal control of brain blood flow. Nature. 2010. Vol. 468. № 7321. P. 232–243. DOI: 10.1038/ nature09613
Stark M. E., Szurszewski J. H. Role of nitric oxide in gastrointestinal and hepatic function and disease. Gastroenterology. 1992. Vol. 103. № 6. P. 1928–1949. DOI: 10.1016/0016-5085(92)91454-c
Choi D. W. Glutamate neurotoxicity and diseases of the nervous system. Neuron. 1988. Vol. 1. № 8. P. 623–634. DOI: 10.1016/0896-6273(88)90162-6
Dirnagl U., Iadecola C., Moskowitz M. A. Pathobiology of ischaemic stroke: an integrated view. Trends in Neurosciences. 1999. Vol. 22. № 9. P. 391–397. DOI: 10.1016/s0166-2236(99)01401-0
Lipton S. A., Rosenberg P. A. Excitatory amino acids as a final common pathway for neurologic disorders. New England Journal of Medicine. 1994. Vol. 330. № 9. P. 613–622. DOI: 10.1056/NEJM199403033300907
Meller S. T., Gebhart G. F. Nitric oxide (NO) and nociceptive processing in the spinal cord. Pain. 1993. Vol. 52. № 2. P. 127–136. DOI: 10.1016/0304-3959(93)90268-i
Paoletti P., Bellone C., Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nature Reviews Neuroscience. 2013. Vol. 14. № 6. P. 383–400. DOI: 10.1038/nrn3504
Cull-Candy S., Leszkiewicz D. N. Role of distinct NMDA receptor subtypes at central synapses. Science’s STKE. 2004. Vol. 2004. № 255. P. re16. DOI: 10.1126/ stke.2552004re16
Johnson J. W., Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 1987. Vol. 325. № 6104. P. 529–531. DOI: 10.1038/325529a0
MacDermott A. B., Mayer M. L., Westbrook G. L. et al. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature. 1986. Vol. 321. № 6069. P. 519–522. DOI: 10.1038/321519a0
Bredt D. S., Snyder S. H. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proceedings of the National Academy of Sciences. 1990. Vol. 87. № 2. P. 682–685. DOI: 10.1073/pnas.87.2.682
Knowles R. G., Moncada S. Nitric oxide synthases in mammals. Biochemical Journal. 1994. Vol. 298. № 2. P. 249–258. DOI: 10.1042/bj2980249 18. Brenman J. E., Chao D. S., Gee S. H. et al. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and α1-syntrophin mediated by PDZ domains. Cell. 1996. Vol. 84. № 5. P. 757–767. DOI: 10.1016/s0092-8674(00)81566-0
Stuehr D. J. Mammalian nitric oxide synthases. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 1999. Vol. 1411. № № 2–3. P. 217–230. DOI: 10.1016/ s0005-2728(99)00016-3
Förstermann U., Sessa W. C. Nitric oxide synthases: regulation and function. European Heart Journal. 2012. Vol. 33. № 7. P. 829–837. DOI: 10.1093/ eurheartj/ehr304
Schuman E. M., Madison D. V. Nitric oxide and synaptic function. Annual Review of Neuroscience. 1994. Vol. 17. № 1. P. 153–183. DOI: 10.1146/annurev. ne.17.030194.001101.
Harteneck C., Koesling D., Söling A. et al. Expression of soluble guanylyl cyclase. FEBS Letters. 1990. Vol. 272. № № 1–2. P. 221–223. DOI: 10.1016/ 0014-5793(90)81116-i
Jaffrey S. R., Erdjument-Bromage H., Ferris C. D. et al. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nature Cell Biology. 2001. Vol. 3. № 2. P. 193–197. DOI: 10.1038/35051609
Lipton S. A., Choi Y. B., Pan Z. H. et al. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitrosocompounds. Nature. 1993. Vol. 364. № 6438. P. 626–632. DOI: 10.1038/364626a0
Nakamura T., Tu S., Lipton S. A. Protein S-nitrosylation as a therapeutic target for neurodegenerative diseases. EMBO Molecular Medicine. 2015. Vol. 7. № 7. P. 876–890. DOI: 10.15252/emmm.201404822
Bliss T. V., Collingridge G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993. Vol. 361. № 6407. P. 31–39. DOI: 10.1038/361031a0
Bon C., Garthwaite J. On the role of nitric oxide in hippocampal long-term potentiation. Journal of Neuroscience. 2003. Vol. 23. № 5. P. 1941–1948. DOI: 10.1523/jneurosci.23-05-01941.2003
Ivanova E. A., Maltsev A. V., Giniatullin R. A. Modulation of AMPA Receptors by Nitric Oxide in Nerve Cells. Biochemistry (Moscow). 2020. Vol. 85. Suppl 1. P. S158 – S168. DOI: 10.1134/s0006297920140131
O’Dell T. J., Hawkins R. D., Kandel E. R., Arancio O. Evidence that nitric oxide synthase is involved in long-term potentiation. Science. 1991. Vol. 254. № 5034. P. 1014–1016. DOI: 10.1126/science.1718012
Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nature Reviews Neuroscience. 2004. Vol. 5. № 5. P. 347–360. DOI: 10.1038/nrn1387
Sanders K. M., Ward S. M. Nitric oxide as a mediator of nonadrenergic noncholinergic neurotransmission. American Journal of Physiology-Gastrointestinal and Liver Physiology. 1992. Vol. 262. № 3. P. G379 – G392. DOI: 10.1152/ajpgi.1992.262.3.g379
Woolf C. J., Salter M. W. Neuronal plasticity: increasing the gain in pain. Science. 2000. Vol. 288. № 5472. P. 1765–1769. DOI: 10.1126/science.288.5472.1765
Szydlowska K., Tymianski M. Calcium, ischemia and excitotoxicity. Cell Calcium. 2010. Vol. 47. № 2. P. 122–129. DOI: 10.1016/j.ceca.2010.01.003
Pacher P., Beckman J. S., Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiological Reviews. 2007. Vol. 87. № 1. P. 315–424. DOI: 10.1152/ physrev.00029.2006
Radi R. Peroxynitrite, a stealthy biological oxidant. Journal of Biological Chemistry. 2004. Vol. 279. № 35. P. 36171–36174. DOI: 10.1074/jbc.R400029200
Mattson M. P. Pathways towards and away from Alzheimer’s disease. Nature. 2004. Vol. 430. № 7000. P. 631–639. DOI: 10.1038/nature02621 37. Li Y., Zhang J., Li Y. Roles of Nitric Oxide in Brain Ischemia and Reperfusion. International Journal of Molecular Sciences. 2022. Vol. 23. № 8. P. 4243. DOI: 10.3390/ijms23084243
Beal M. F. Excitotoxicity and nitric oxide in Parkinson’s disease pathogenesis. Annals of Neurology. 1998. Vol. 44. № S3. P. S110 – S114. DOI: 10.1002/ ana.410440718
Chung K. K., Thomas B., Li X. et al. S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity and is neuroprotective. Science. 2004. Vol. 304. № 5675. P. 1328–1331. DOI: 10.1126/science.1094049
Brown G. C. Nitric oxide and neurodegeneration. Nitric Oxide. 2010. Vol. 23. № 3. P. 153–154. DOI: 10.1016/j.niox.2010.05.002
Олещук О. М., Чорномидз А. В. Значення сис- теми оксиду азоту у функціонуванні шлунка в нормі та при патології. Медична та клінічна хімія. 2016. Т. 18. № 2. С. 84–95.
Calabrese V., Mancuso C., Calvani M. et al. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nature Reviews Neuroscience. 2007. Vol. 8. № 10. P. 766–775. DOI: 10.1038/nrn2214
De Giorgio R., Guerrini S., Barbara G. et al. Inflammatory neuropathies of the enteric nervous system.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Medical and Clinical Chemistry

This work is licensed under a Creative Commons Attribution 4.0 International License.