THE INTERPLAY OF GLUTAMATE-ASPARTATE SIGNALING AND THE NITRIC OXIDE SYSTEM: MOLECULAR MECHANISMS, PHYSIOLOGICAL FUNCTIONS, PATHOLOGICAL CONSEQUENCES, AND THERAPEUTIC INTERVENTIONS

Authors

DOI:

https://doi.org/10.11603/mcch.2410-681X.2025.i4.15928

Keywords:

Nitric Oxide (NO); Glutamate; NMDA-receptor; Excitotoxicity; neuronal NO synthase (nNOS).

Abstract

Introduction. The interaction between the excitatory amino acid (EAA) system (L-glutamate, L-aspartate) and the nitric oxide (NO) system is a fundamental signaling cascade in mammals. It functions as a “double-edged sword”, defining the boundary between physiological adaptation and pathological damage. The Aim of the Study. To conduct a comprehensive, interdisciplinary analysis and to systematize current data on the molecular mechanisms, physiological and pathological roles, and therapeutic potential of the glutamate- NO signaling pathway. Results and Discussion. The central integrative event is the activation of the ionotropic NMDA-receptor (NMDAR), which triggers calcium-dependent NO synthesis by neuronal NO synthase (nNOS). Under physiological conditions, this cascade is essential for synaptic plasticity (LTP), neurovascular coupling, and peripheral regulation (e.g., in the GIT). However, its overactivation during ischemia, trauma, and neuroinflammation initiates the mechanism of excitotoxicity. This review provides a detailed analysis of key pathogenetic links: (1) the conversion of NO into the highly toxic peroxynitrite; (2) the role of inducible iNOS in neuroinflammation; (3) the phenomenon of nNOS “uncoupling” due to deficiency of its cofactor BH4; and (4) the critical role of the GluN2B-PSD-95- nNOS supramolecular complex as a “pro-death” signal target. The pathological role of the cascade in stroke, neurodegenerative diseases (Alzheimer’s, Parkinson’s), and the formation of chronic pain is discussed. Conclusions. The clinical failures of non-selective NMDAR antagonists are analyzed, justifying the shift in therapeutic strategies toward “fine-tuning” modulation. Promising approaches include selective GluN2B subunit antagonists, ONOO- scavengers, nNOS stabilizers, and innovative peptides that disrupt the pathological PSD-95/ nNOS interaction. Understanding this cascade remains a priority for developing new treatments for neurological and somatic disorders.

References

Furchgott R. F., Ignarro L. J., Murad F. The Nobel Prize in Physiology or Medicine 1998. NobelPrize. org. 1998. URL: https://www.nobelprize.org/prizes/ medicine/1998/summary/ (дата звернення: 05.11.2025).

Garthwaite J. Concepts of neural nitric oxide-mediated transmission. European Journal of Neuroscience. 2008. Vol. 27. № 11. P. 2783–2802. DOI: 10.1111/j.1460-9568.2008.06285.x

Watkins J. C., Evans R. H. Excitatory amino acid transmitters. Annual Review of Pharmacology and Toxicology. 1981. Vol. 21. № 1. P. 165–204. DOI: 10.1146/ annurev.pa.21.040181.001121

Garthwaite J., Charles S. L., Chess- Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature. 1988. Vol. 336. № 6197. P. 385–388. DOI: 10.1038/336385a0

Hardingham G. E., Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nature Reviews Neuroscience. 2010. Vol. 11. № 10. P. 682–696. DOI: 10.1038/nrn2911

Attwell D., Buchan A. M., Charpak S. et al. Glial and neuronal control of brain blood flow. Nature. 2010. Vol. 468. № 7321. P. 232–243. DOI: 10.1038/ nature09613

Stark M. E., Szurszewski J. H. Role of nitric oxide in gastrointestinal and hepatic function and disease. Gastroenterology. 1992. Vol. 103. № 6. P. 1928–1949. DOI: 10.1016/0016-5085(92)91454-c

Choi D. W. Glutamate neurotoxicity and diseases of the nervous system. Neuron. 1988. Vol. 1. № 8. P. 623–634. DOI: 10.1016/0896-6273(88)90162-6

Dirnagl U., Iadecola C., Moskowitz M. A. Pathobiology of ischaemic stroke: an integrated view. Trends in Neurosciences. 1999. Vol. 22. № 9. P. 391–397. DOI: 10.1016/s0166-2236(99)01401-0

Lipton S. A., Rosenberg P. A. Excitatory amino acids as a final common pathway for neurologic disorders. New England Journal of Medicine. 1994. Vol. 330. № 9. P. 613–622. DOI: 10.1056/NEJM199403033300907

Meller S. T., Gebhart G. F. Nitric oxide (NO) and nociceptive processing in the spinal cord. Pain. 1993. Vol. 52. № 2. P. 127–136. DOI: 10.1016/0304-3959(93)90268-i

Paoletti P., Bellone C., Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nature Reviews Neuroscience. 2013. Vol. 14. № 6. P. 383–400. DOI: 10.1038/nrn3504

Cull-Candy S., Leszkiewicz D. N. Role of distinct NMDA receptor subtypes at central synapses. Science’s STKE. 2004. Vol. 2004. № 255. P. re16. DOI: 10.1126/ stke.2552004re16

Johnson J. W., Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 1987. Vol. 325. № 6104. P. 529–531. DOI: 10.1038/325529a0

MacDermott A. B., Mayer M. L., Westbrook G. L. et al. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature. 1986. Vol. 321. № 6069. P. 519–522. DOI: 10.1038/321519a0

Bredt D. S., Snyder S. H. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proceedings of the National Academy of Sciences. 1990. Vol. 87. № 2. P. 682–685. DOI: 10.1073/pnas.87.2.682

Knowles R. G., Moncada S. Nitric oxide synthases in mammals. Biochemical Journal. 1994. Vol. 298. № 2. P. 249–258. DOI: 10.1042/bj2980249 18. Brenman J. E., Chao D. S., Gee S. H. et al. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and α1-syntrophin mediated by PDZ domains. Cell. 1996. Vol. 84. № 5. P. 757–767. DOI: 10.1016/s0092-8674(00)81566-0

Stuehr D. J. Mammalian nitric oxide synthases. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 1999. Vol. 1411. № № 2–3. P. 217–230. DOI: 10.1016/ s0005-2728(99)00016-3

Förstermann U., Sessa W. C. Nitric oxide synthases: regulation and function. European Heart Journal. 2012. Vol. 33. № 7. P. 829–837. DOI: 10.1093/ eurheartj/ehr304

Schuman E. M., Madison D. V. Nitric oxide and synaptic function. Annual Review of Neuroscience. 1994. Vol. 17. № 1. P. 153–183. DOI: 10.1146/annurev. ne.17.030194.001101.

Harteneck C., Koesling D., Söling A. et al. Expression of soluble guanylyl cyclase. FEBS Letters. 1990. Vol. 272. № № 1–2. P. 221–223. DOI: 10.1016/ 0014-5793(90)81116-i

Jaffrey S. R., Erdjument-Bromage H., Ferris C. D. et al. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nature Cell Biology. 2001. Vol. 3. № 2. P. 193–197. DOI: 10.1038/35051609

Lipton S. A., Choi Y. B., Pan Z. H. et al. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitrosocompounds. Nature. 1993. Vol. 364. № 6438. P. 626–632. DOI: 10.1038/364626a0

Nakamura T., Tu S., Lipton S. A. Protein S-nitrosylation as a therapeutic target for neurodegenerative diseases. EMBO Molecular Medicine. 2015. Vol. 7. № 7. P. 876–890. DOI: 10.15252/emmm.201404822

Bliss T. V., Collingridge G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993. Vol. 361. № 6407. P. 31–39. DOI: 10.1038/361031a0

Bon C., Garthwaite J. On the role of nitric oxide in hippocampal long-term potentiation. Journal of Neuroscience. 2003. Vol. 23. № 5. P. 1941–1948. DOI: 10.1523/jneurosci.23-05-01941.2003

Ivanova E. A., Maltsev A. V., Giniatullin R. A. Modulation of AMPA Receptors by Nitric Oxide in Nerve Cells. Biochemistry (Moscow). 2020. Vol. 85. Suppl 1. P. S158 – S168. DOI: 10.1134/s0006297920140131

O’Dell T. J., Hawkins R. D., Kandel E. R., Arancio O. Evidence that nitric oxide synthase is involved in long-term potentiation. Science. 1991. Vol. 254. № 5034. P. 1014–1016. DOI: 10.1126/science.1718012

Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nature Reviews Neuroscience. 2004. Vol. 5. № 5. P. 347–360. DOI: 10.1038/nrn1387

Sanders K. M., Ward S. M. Nitric oxide as a mediator of nonadrenergic noncholinergic neurotransmission. American Journal of Physiology-Gastrointestinal and Liver Physiology. 1992. Vol. 262. № 3. P. G379 – G392. DOI: 10.1152/ajpgi.1992.262.3.g379

Woolf C. J., Salter M. W. Neuronal plasticity: increasing the gain in pain. Science. 2000. Vol. 288. № 5472. P. 1765–1769. DOI: 10.1126/science.288.5472.1765

Szydlowska K., Tymianski M. Calcium, ischemia and excitotoxicity. Cell Calcium. 2010. Vol. 47. № 2. P. 122–129. DOI: 10.1016/j.ceca.2010.01.003

Pacher P., Beckman J. S., Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiological Reviews. 2007. Vol. 87. № 1. P. 315–424. DOI: 10.1152/ physrev.00029.2006

Radi R. Peroxynitrite, a stealthy biological oxidant. Journal of Biological Chemistry. 2004. Vol. 279. № 35. P. 36171–36174. DOI: 10.1074/jbc.R400029200

Mattson M. P. Pathways towards and away from Alzheimer’s disease. Nature. 2004. Vol. 430. № 7000. P. 631–639. DOI: 10.1038/nature02621 37. Li Y., Zhang J., Li Y. Roles of Nitric Oxide in Brain Ischemia and Reperfusion. International Journal of Molecular Sciences. 2022. Vol. 23. № 8. P. 4243. DOI: 10.3390/ijms23084243

Beal M. F. Excitotoxicity and nitric oxide in Parkinson’s disease pathogenesis. Annals of Neurology. 1998. Vol. 44. № S3. P. S110 – S114. DOI: 10.1002/ ana.410440718

Chung K. K., Thomas B., Li X. et al. S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity and is neuroprotective. Science. 2004. Vol. 304. № 5675. P. 1328–1331. DOI: 10.1126/science.1094049

Brown G. C. Nitric oxide and neurodegeneration. Nitric Oxide. 2010. Vol. 23. № 3. P. 153–154. DOI: 10.1016/j.niox.2010.05.002

Олещук О. М., Чорномидз А. В. Значення сис- теми оксиду азоту у функціонуванні шлунка в нормі та при патології. Медична та клінічна хімія. 2016. Т. 18. № 2. С. 84–95.

Calabrese V., Mancuso C., Calvani M. et al. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nature Reviews Neuroscience. 2007. Vol. 8. № 10. P. 766–775. DOI: 10.1038/nrn2214

De Giorgio R., Guerrini S., Barbara G. et al. Inflammatory neuropathies of the enteric nervous system.

Published

2026-02-04

How to Cite

Chornomydz, V., Bukata, V. V., & Chornomydz I. В. (2026). THE INTERPLAY OF GLUTAMATE-ASPARTATE SIGNALING AND THE NITRIC OXIDE SYSTEM: MOLECULAR MECHANISMS, PHYSIOLOGICAL FUNCTIONS, PATHOLOGICAL CONSEQUENCES, AND THERAPEUTIC INTERVENTIONS. Medical and Clinical Chemistry, (4), 113–125. https://doi.org/10.11603/mcch.2410-681X.2025.i4.15928

Issue

Section

REVIEWS