Experimental evaluation of melatonin, citicoline, corvitin and thiotriazoline effect on microcirculation in the vessels of the ciliary body of rabbits under contusion of the eye according to laser doppler flowmetry

K. M. Komnatska, O. V. Khodakivska, I. L. Chereshniuk, O. A. Khodakivskyi

Abstract


Introduction. Neuroretinoprotective activity of melatonin is the basis for further comprehensive assessment of possible mechanisms of its protective action in order to reasonable implementation of the drug in ophthalmic practice as a remedy with neuroretinoprotective action for the treatment of traumatic lesions of eye.

The aim of the study – to learn Laser Doppler Flowmetry method to investigate the effect of melatonin and reference drugs (citicoline, corvitin and thiotriazoline) on completeness of recovery of blood flow in the vessels of the ciliary body in dynamic of its contusion as a possible mechanism of their neuroretinoprotective action.

Research Methods. Model of eye contusion is a blank shot into the center of the cornea closely with carbon dioxide under pressure. Therapy is separate intravenous administration of drugs (melatonin 10 mg / kg, corvitin 10 mg / kg citicoline 250 mg / kg and thiotriazoline 100 mg / kg) twice a day during 7 days, the first application 1 h after injury. Effect of drugs on microcirculation in the eye ciliary body in this condition was studied with using Laser Doppler Flowmetry module BIOPAC (USA).

Results and Discussion. Therapeutic application of all test substances amortized rapid deterioration of blood supply to the eye. Melatonin is the leader among the selected drugs for the ability to improve the circulation in the ciliary body of eye during the first week after its contusion.

Conclusion. Restoration of eye perfusion caused by contusion on the background of application of melatonin, citicoline, corvitin and thiotriazoline is one of the leading mechanisms of neuroretinoprotective action of these drugs.


Keywords


melatonin; reference-drugs; contusion of an eye; eye perfusion; neuroretinoprotection; Laser Doppler Flowmetry.

References


Komnatska, K.M., Chereshniuk, I.L., Khodakivskyi, O.A., & Prokopenko, S.V. (2016). Skryninh naiavnosti ta porivnialna otsinka velychyny neiroretynoprotektornoho efektu sered deiakykh preparativ z antyoksydantnoiu diieiu abo moduliuvalnoiu aktyvnistiu na formuvannia hlutamatnoi eksaitotoksychnosti [Screening presence and comparative evaluation of size neuroretinoprotective effect among some drugs with antioxidant action or modulating activity on formation of glutamate excitotoxicity]. Svit medytsyny ta biolohii –‒World of Medicine and Biology, 12 (4), 105-109. Retrieved from http://womab.com.ua/ua/smb-2016-04/6354 [in Ukrainian].

Chereshniuk, I.L., Povkh, V.L., Komnatska, K.M., & Khodakivskyi, O.A. (2016). Patent for Utility Model No 109424 UA. Kyiv, Ukraine: Ukrainian Intellectual Property Institute.

De Simone, F., & Serratosa, J. (2005). Biotechnology, animal health and animal welfare within the framework of European Union legislation. Revue Scientifique et Technique, 24 (1), 89-99.

Chereshniuk, I.L., Komnatska, K.M., Povkh, V.L., & Khodakivskyi, O.A. (2016). Patent for Utility Model No 109789 UA. Kyiv, Ukraine: Ukrainian Intellectual Property Institute.

Maneva, H., Uz, T., Kharlamovb, A., Joo, J.Y., Giustic, P., & Cagnolib, C.M. (1997). Melatonin Reduces the Expression of Excitotoxicity-Triggered Markers of Apoptosis. Therapeutic Potential of Melatonin. Front Horm Res. Basel, Karger, 23, 89-98. http://doi.org/10.1159/000060978

Kiseleva, T.N., Chudin, A.V., & Ramazanova, K.A. (2014). Metody issledovaniya mikrotsirkulyatsyi glaza u eksperimentalnykh zhivotnykh [Methods of ocular microcirculation assessment in experimental animals]. Vestnik oftalmologii – Journal of Ophthalmology, 130 (5), 100-103 [in Russian].

Khodakivskyi, O.A., Stepaniuk, N.H., Bielienichev, I.F., Bukhtiiarova, N.V., & Kovalenko, S.I. (2007). Porivnialnyi vplyv pokhidnykh khinazolinu z laboratornymy shyframy Kh-1, N-1, PK-66 ta kavintonu na mozkovyi krovotik u narkotyzovanykh kotiv [Comparative effect of quinazoline derivative with laboratory ciphers H-1, N-1, PC-66 and Cavinton on cerebral blood flow in anesthetized cats]. Visnyk Vinnytskoho natsionalnoho medychnoho universytetu – Journal of Vinnytsia National Medical University, 11 (2/1), 576-579 [in Ukrainian].

Khodakovskiy, A.A, Marynych, L.I., & Bagauri, O.V. (2013). Osobennosti formirovaniya postreperfuzionnogo povrezhdeniya neyronov–kharakteristika modeli «ishemiya-reperfuziya». Novye napravleniya i perspektivy razvitiya sovremennoy tserebroprotektornoy terapii ishemicheskogo insulta [Features of the formation of the neurons' postperfusion damage – characteristic of “ischemia – reperfusion” model. New directions and perspectives of the development of modern cerebroprotective therapy of ischemic insult]. Vrach-aspirant – Postgraduate Doctor, 58 (3), 69-76 [in Russian].

Belenichev, I.F., Chernii, V.I., Kolesnik, Y.M., & Pavlov, S.V. (2009). Ratsionalnaya neyroprotektsiya [Rational neuroprotection]. Donetsk : Izd. dom Zaslavskiy A.Yu. [in Russian].

Traynelis, S., Wollmuth, L., McBain, C., Menniti, F., Vance, K., Ogden, K. et al. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacological Reviews, 62 (3), 405-496. http://dx.doi.org/10.1124/pr.109.002451

Mazur, I.A., Chekman, I.S., & Belenichev, I.F. (2007). Metabolitotropnye preparaty [Metabolitropic drugs]. Zaporozhe [in Russian].

Lau, A., & Tymianski, M. (2010). Glutamate receptors, neurotoxicity and neurodegeneration. Pflügers Archiv - European Journal of Physiology, 460 (2), 525-542. http://doi.org/ 10.1007/s00424-010-0809-1

Millan, M.J., Brocco, M., Gobert, A., & Dekeyne, A. (2005). Anxiolytic properties of agomelatine, an antidepressant with melatoninergic and serotonergic properties: role of 5-HT2C receptor blockade. Psychopharmacology, 177 (4), 448-458. http://doi.org/10.1007/s00213-004-1962-z

Blessing, W.W., & Seaman, B. (2003). 5-hydroxytryptamine2A receptors regulate sympathetic nerves constricting the cutaneous vascular bed in rabbits and rats. Neuroscience, 117 (4), 939-948. http://doi.org/10.1016/S0306-4522(02)00810-2

Hoyer, D., Hannon, J.P., & Martin, G.R. (2002). Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacology Biochemistry and Behavior, 71 (4), 533-554. http://doi.org/10.1016/S0091-3057(01)00746-8

Van Oekelen, D., Luyten, W.H., & Leysen, J.E. (2003). 5-HT 2A and 5-HT 2C receptors and their atypical regulation properties. Life Sciences, 72 (22), 2429-2449. http://doi.org/10.1016/S0024-3205(03)00141-3




DOI: http://dx.doi.org/10.11603/mcch.2410-681X.2017.v0.i2.7974

Refbacks

  • There are currently no refbacks.