MORPHOLOGICAL AND METABOLIC CHANGES CAUSED BY SYNDROME OF ISCHEMIA-REPERFUSION, AND FEATURES OF ITS THERAPEUTIC INFLUENCE
DOI:
https://doi.org/10.11603/1811-2471.2018.v0.i4.9733Keywords:
ischemia, ischemia-reperfusion, bleeding, tourniquet, skeletal muscle, experiment, necrosis, apoptosisAbstract
The article analyzes literary sources regarding the causes and characteristics of the development of ischemia-reperfusion syndrome, as well as manifestations of pathophysiological changes under the influence of environmental factors. The influence of treatment and prophylactic measures aimed at reducing the damage is investigated.
An influx of oxygenated blood which contains nutrients is imperative for the nutrition of each organ. Ischemia, being a condition of limiting or stopping of blood supply, has many causes – acute and chronic.
Changes that cause ischemia can develop for decades (cardiovascular and cerebrovascular diseases). There are also those that arise against the backdrop of a relatively short period of time and are associated with a sudden cessation of blood supply (embolism, thrombosis, long-term compression syndrome and one of its variants – complications arising from the use of a hemostatic tourniquet, as well as a tourniquet for blood supply stoppage in organ during surgery).
The type of ischemia that leads to the restoration of blood flow, causes a special phenomenon, when restoring the blood supply of ischemic tissue and it leads also to quite expressed tissues' damage than those that occur on the background of isolated ischemia. This phenomenon is called the syndrome of ischemia-reperfusion. Acute limb ischemia has such symptoms as pain, edema, loss of function and violation of nerve condition. But in complicated state it can cause damaging of the whole body.
References
Abela, C.B., & Homer-Vanniasinkham, S. (2003). Clinical implications of ischaemia-reperfusion injury. Pathopysiology, 9, 229-240.
Price, G.J., Miller, S.H., Kennedy, T.J., & Graham, W.P. (1978). Acute and delayed effects of tourniquet ischemia on subfascial pressures and tissue gas tensions within muscles of the subhuman primate limb. Surgical Forum, 29, 612-615.
Nanobashvili, J., Neumayer, C., Fuegl, A., Blumer, R., Prager, M., Sporn, E., … & Huk, I. (2003). Development of “no-reflow” phenomenon in ischemia/reperfusion injury: failure of active vasomotility and not simply passive vasoconstriction. European Surgical Research Journal, 35, 417-424.
Nanobashvili, J., Neumayer, C., Fuegl, A., Blumer, R., Prager, M., Sporn, E., … & Huk, I. (2003). Development of no-reflow phenomenon in ischemia/reperfusion injury: failure of active vasomotility and not simply passive vasoconstriction. European Surgical Research Journal, 35 (5), 417-424.
Eltzschig, H.K. & Collard, C.D. (2004). Vascular ischaemia and reperfusion injury. British Medical Bulletin, 70 (1), 71-86.
de Groot, H. & Rauen, U. (2007). Ischemia-Reperfusion Injury: Processes in Pathogenetic Networks: A Review. Transplantation Proceedings, 39, 481-484.
Aslan, T., Turer, M.D., Joseph, A., & Hill, M.D. (2010). Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. The American Journal of Cardiology, 106, 3, 360-368.
Zhang, J.A., Zhang, J.B., Yu, P.C. Chen, M.D., Peng, O.E., Wang, Z.F., & Dong, N.A. (2017). Remote ischaemic preconditioning and sevoflurane postconditioning synergistically protect rats from myocardial injury induced by ischemia and reperfusion partly via inhibition TLR4/MyD88/NF-κB Signaling Pathway. Cellular Physiology and Biochemistry, 41, 22-32.
Teoh, N.C. & Farrell, G.C. (2003). Hepatic ischemia reperfusion injury: Pathogenic mechanisms and basis for hepatoprotection. Journal of Gastroenterology and Hepatology, 18 (8), 891-902.
Inauen, W., Suzuki, M., & Granger, D.N. (1989). Mechanisms of cellular injury: potential sources of oxygen free radicals in ischemia/reperfusion. Microcirculation, Endothelium, and Lymphatics, 5 (3-5), 143-155.
Rochette, L., & Maupoil, V. (1992). Free radicals, lipid peroxidation and muscular ischemia. Comptes Rendus des Seances de la Societe de Biologie, 186 (3), 252-262.
Tarasiuk, V.S., Matviichuk, M.V., Palamar, I.V., Korolova, N.D., Poliarush, V.V., Podolian, V., … & Dubovyi, O. (2017). Pohliady na tymchasovi metody zupynky krovotechi v umovakh boiovykh dii [Views on temporary methods of stopping bleeding in combat]. Visnyk vinnytskoho natsionalnoho medychnoho universytetu – Bulletin of the Vinnytsia National Medical University, 1, (2, 21), 220-227 [in Ukrainian].
Pinchuk, O., & Pinchuk, V. (2015). Viiskovi medyky na poli boiu: navch. prohrama [Military doctors on the battlefield: educational program]. Medsanbat. Info, Version 1, Kyiv. Retrieved from: http://sergbukarevua.wixsite.com/voenlit/single-post/2016/11/06/%D0%9D%D0%B0%D0%B2%D1%87%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0-%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%B0-%D0%92%D1%96%D0%B9%D1%81%D1%8C%D0%BA%D0%BE%D0%B2%D1%96-%D0%BC%D0%B5%D0%B4%D0%B8%D0%BA%D0%B8-%D0%BD%D0%B0-%D0%BF%D0%BE%D0%BB%D1%96-%D0%B1%D0%BE%D1%8E [in Ukrainian]
Berezan, S., & Rotchuk, S. (2016). Taktychna medytsyna dlia pidrozdiliv spetsialnoho pryznachennia [Tactical medicine for special units]. Kyiv: PP “MVTs “Medinform” [in Ukrainian].
Skjeldal, S.A., Grogaard, B., Reikeras, O., Müller, C., Torvik, A., & Svindland, A. (1991). Model for skeletal muscle ischemia in rat hindlimb: evaluation of reperfusion and necrosis. European Surgical Research, 23 (5-6), 355-365.
Haljamäe, H. & Enger, E. (1975). Human skeletal muscle energy metabolism during and after complete tourniquet ischemia. Annals of Surgery, 182 (1), 9-14.
Häggmark, T., Jansson, E., & Eriksson, E. (1981). Time course of muscle metabolic changes during tourniquet ischemia in man. International Journal of Sports Medicine, 2 (1), 50-53.
Larsson, J. & Bergström, J. (1978). Electrolyte changes in muscle tissue and plasma in tourniquet-ischemia. Acta Chirurgica Scandinavica, 144 (2), 67-73.
Miller, S.H., Lung, R.J., Graham, W.P., Davis, T.S., & Rusenas, I. (1978). The acute effects of tourniquet ischemia on tissue and blood gas tensions in the primate limb. Journal of Hand Surgery, 3 (1), 11-20.
Miller, S.H., Price, G., Buck, D., Neeley, J., Kennedy, T.J., Graham, W.P., & Davis, T.S. (1979). Effects of tourniquet ischemia and postischemic edema on muscle metabolism. Journal of Hand Surgery, 4 (6), 547-555.
Skjeldal, S.A., Grogaard, B.C., Nordsletten, L.B., Reikeras, O.A., Svindland, A.D., & Torvik, A.D. (1992). Protective effect of low-grade hypothermia in experimental skeletal muscle ischemia. European Surgical Research, 24 (4), 197-203.
Skjeldal, S., Torvik, A., Nordsletten, L., Kirkeby, O.J., Grogaard, B., Svindland, A., Reikeras, O. (1993). Local hypothermia during ischemia or reperfusion in skeletal muscles. Research in Experimental Medicine, 193 (2), 73-80.
Byrne, R.M., Taha, A.G., Avgerinos, E., Marone, L.K., Makaroun, M.S., & Chaer, R.A. (2014). Contemporary outcomes of endovascular interventions for acute limb ischemia. Journal of Vascular Surgery, 59 (4), 988-995.
Fukuda, I., Chiyoya, M., Taniguchi, S., & Fukuda, W. (2015). Acute limb ischemia: contemporary approach. The Journal of Thoracic and Cardiovascular Surgery, 63 (10), 540-548.
Kirisci, M., Oktar, G.L., Ozogul, C., Oyar, E.O., Akyol, S.N., Demirtas, C.Y., & Arslan, M. (2013). Effects of adrenomedullin and vascular endothelial growth factor on ischemia/reperfusion injury in skeletal muscle in rats. Journal of Surgical Research, 185 (1), 56-63.
Zeng, Q., Fu, Q., Wang, X., Zhao, Y., Liu, H., Li, Z., & Li, F. (2017). Protective effects of Sonic Hedgehog against ischemia/reperfusion injury in mouse skeletal muscle via AKT/mTOR/p70S6K Signaling. Cellular Physiology and Biochemistry, 43 (5), 1813-1828.
Nolte, D., Pickelman, S., Schütze, E., Möllmann, M., & Messmer, K. (1997). Effects of Daflon® 500 mg on Postischemic Macromolecular Leak Syndrome in Striated Skin Muscle of the Hamster. International Journal of Microcirculation, 17, 6-10.
Erkut, B., Özyazıcıoğlu, A., Karapolat, B.S., Koçoğulları, C.U., Keles, S., Ateş, A., … & Kocak, H. (2007). Effects of ascorbic Acid, alpha-tocopherol and allopurinol on ischemia-reperfusion injury in rabbit skeletal muscle: an experimental study. Drug Target Insights, 2, 249-258.
Skjeldal, S.A., Hvaal, K., Nordsletten, L., Aasen A. O., Reikeras, O., & Torvik, A. (1994). Pentoxifylline reduces skeletal muscle necrosis after acute hindlimb ischemia in rats. European Surgical Research, 26 (2), 94-100.
Teruya, R., Fagundes, D.J., Oshima, C.T., Brasileiro, J.L., Marks, G., Ynouye, C.M., & Simoes, M.J. (2008). The effects of pentoxifylline into the kidneys of rats in a model of unilateral hindlimb ischemia/reperfusion injury. Acta Cirurgica Brasileira, 23 (1), 29-35.
Moreira Neto, A.A., Junior Souza, S.S., Capelozzi, V.L., Parra-Cuentas, E.R., Junior Schmidt, A.F., & Francisco, O.R. (2012). Rodrigues effects of cilostazol in kidney and skeletal striated muscle of Wistar rats submitted to acute ischemia and reperfusion of hind limbs. Acta Cirurgica Brasileira, 27 (11), 783-388.
Sousa, R.C., Neto Moreira, A.A., Capelozzi, V.L., AbSaber, A.M., & Rodrigues, O.R. (2015). Effects of vardenafil on the kidney of Wistar rats submitted to acute ischemia and reperfusion. Acta Cirurgica Brasileira, 30 (5), 339-344.
Skjeldal, S., Grogaard, B., Nordsletten, L., Torvik, A., Svindland, A., & Reikaras, O. (1994). Does granulocyte depletion protect against ischaemic muscle necrosis? Scandinavian Journal of Clinical Laboratory Investigation, 54 (1), 17-22.