2-MERCAPTOBENZОTHIAZOLE RADIOPROTECTIVE EFFECT ON IN VITRO CELL CULTURE

Authors

  • K. M. Litvinchuk National Scientific Center of Radiation Medicine of the National Academy of Medical Sciences of Ukraine1
  • H. Yo. Lavrenchuk National Scientific Center of Radiation Medicine of the National Academy of Medical Sciences of Ukraine1
  • V. R. Gurando Uzhhorod National University2
  • I. M. Klishch I. Horbachevsky Ternopil State Medical University3
  • A. O. Kovalchuk I. Horbachevsky Ternopil State Medical University3

DOI:

https://doi.org/10.11603/1811-2471.2018.v0.i2.8914

Keywords:

ionizingradiation, radioprotectors, cell culture, proliferation, mitosis, differentiation of myogeniccells, apoptosis.

Abstract

Aim: to study the radioprotective properties of 2-merсaptobenzothiazole on proliferating cell culture test system.

Material and Methods. Cytological, statistics.

Results. Upon the incubation of inoculated cellline L929 with 2-merсaptobenzothiazole in the concentration range 0.03–3.00 µg/mL statistically significant change (p≤0.05) of cell population density in mono layer cultures was not found. At the same time for all the applied reagent concentrations stimulation of mitotic activity in the terminal (5th day) stage of cultivation was observed. Exposure of cells by gamma-quanta of 60Co in doses of 1, 5 and 10 Gyled to dose-dependant morphological changes in cell culture. The irradiation of cells in the presence of 2-mercaptobenzothiazole significantly reduced the negative effect of radiation on the indicators of vitality of cells and their differentiation in culture.

Conclusions. Quantitative evaluation of radioprotective properties of 2-mercaptobenzothiazole in the test systems of culture of myogenic cells as well as in the L929 line (fibroblast cells) revealed that the highest coefficients of protection (0.31–0.36) and maximum level of factor of dose reduction (4) were observed at 3 mg/ml reagent concentration (irradiation dose – 1 Gy). According to the literature data and our research results, 2-mercaptobenzothiazole might be considered as a reagent with radioactive properties for cells in vitro.

References

Uzlenkova, N.E. (2014). Radioprotektory: suchasnyi stan problem [Radioprotectors: the current state of the problem]. Ukr. radiol. zhurn. – Ukrainian Journal of Radiology, XXII (4), 42-49 [in Ukrainian].

Gudkov, A.V., & Komarova, E.A. (2010). Radioprotection: smart games with death. J. Clin. Invest., 120 (7), 2270-2273.

Druzhyna, M., Moisieiev, A., Lypska, A., & Hryne­vych, Yu. (2005). Radiatsiini urazhennia yak radioprotectory [Radiation damage and radioprotectors]. Visn. NAN Ukrainy – Journal of NAS of Ukraine, 4, 17-24 [in Ukrainian].

Bebeshkо, V.G. (2007). Radioprotectory, yak za­so­by minimizatsii i naslidky v Chornobylskii katastrofi [Radioprotectors as a means of minimizing the consequences of the Chernobyl disaster]. Kyiv: DIA [in Ukrainian].

Vasin, M.V. (2013). Klassifikatsiya protivoluchevykh sredstv kak otrazhenie sovremennogo sostoyaniya i perspektivy razvitiya radiazionnoy farmakologiii [Classification of radioprotective agents as a reflection of the current state and prospects of development of radiation pharmacology]. Radiat. biol. Radioekol. – Radiation Biological Radioecology, 53 (6), 459-468 [in Russian].

Koterov, A.N. (2013). Problemy poiska sredstv protivoluchevoy zashchity cheloveka v svetedostizhenii genetiki stareniya [Problems of fund raising radioprotective protection rights in the light of aging genetics]. Radiat. biol. Radioekol. – Radiation Biological Radioecology, 53 (6), 487-495 [in Russian].

Mandrugin, A.A., Borisova, G.S., Filimonov, M.F., & Shevchenko, L.I. (2014). Sozdanie novogo pokoleniya radiozashchitnykh sredstv na osnove khimicheskikh ingibitorov NO-sintetazy [Creating a new generation of radioprotective substances on the basis of chemical inhibitors of NO-synthase]. Moscow: RUDN [in Russian].

Vasin, M.V. (2014). Radiomodulyatory kak vazhnyy component biologicheskoy zashchity otporazhayushchego deystviya i oniziruyushchego izlucheniya [Radio modulators as an important component of biological protection against the damaging effects of ionizing radiation]. Materials of VII congress of radiation research (radiobiology, radioecology, radiation safety): theses of reports. Moscow: RUDN [in Russian].

Rasina, L.N. (1997). Nekotorye itogi i perspektivy razrabotki protivoluchevykh preparatov v ryadu geterotsiklicheskikh soyedineniy. Diagnosis and prevention of adverse effects of radiation materials 3rd Symposium [Some results and prospects for the development of anti-inflammatory drugs in the range of heterocyclic compounds]. Kiev: Institute of Experimental Radiology NCRM AMS Ukraine, International organization “Female community” [in Russian].

Grebenyuk, A.N. (2014). Problemy i perspektivy sovremennoy radiatsionnoy farmakologii [Problems and perspectives of modern radiation pharmacology]. Materials of VII congress of radiation research (radiobiology, radioeco­logy, radiation safety): theses of reports. Moscow [in Russian].

Rozhdestvenskiy, L.M., Shlyakova, T.G., Shchego­leva, R.A. (2013). Otsenka lechebnoy effektivnosti ote­chestvennykh preparatov G-KSF v opytakh na obluchennykh sobakah [Assessment of therapeutic efficacy of domestic preparations of G-CSF in experiments on dogs irradiated]. Radiat. biol. Radioekol. – Radiation Biological Radioecology, 53 (6),47-54 [in Russian].

Vasin, M.V. (2011). Potentsialnaya rol faktora ne­­ravnomernosti pogloshcheniya energii i oniziruyushchego izlucheniya v organizme v effektivnosti protivoluchevykh preparatov [Potential role of the factor of uneven energy absorption of ionizing radiation in the body in the effectiveness of radioprotective drugs]. Med. radiologiya i radiat. bezopasnost – Medical Radiology and Radiation Safety, 56 (4), 60-70 [in Russian].

Zatsepin, V.V. (2014). Eksperimentalnaya otsenka radiozashchitnoy effektivnosti kombinirovannogo primene­niya preparatov s razlichnymi mekhanizmami protivoluche­vogo deystviya pri ostrom obluchenii [Experimental evaluation of radioprotective efficiency of the combined use of drugs with different mechanisms of radioprotective action in acute irradiation]. Moscow: RUDN [in Russian].

Kouvaris, J.R., Kouloulias, V.E., & Vlahos, L.J. (2007). Amifostine: The first selective-target and broad-spectrum radioprotector. The Oncologist, 12, 738-747.

Kuna, Р., Navratil, L., & Singer, J. (2007). Amifostine (WR-2721) as a radioprotector for the emergency workers. Kyiv: In-t klitynnoi biolohii ta henetychnoi inzhenerii NAN Ukrainy, 211-223.

Dyakonov, L.P. (Ed.). (2009). Zhivotnaya kletka v kulture [Animal cell in culture (Methods and applications in biotechnology)]. Moscow: “Sputnik+” [in Russian].

Lapach, S.N., Chubenko, A.V., & Babich, P.N. (2000). Statisticheskie metody v mediko-biologicheskikh issledovaniyakh s ispolzovaniem MS EXCEL [Statistical methods in biome­dical research using MS EXCEL]. Kyiv: MORION [in Russian].

Kalendо, G.S. (1982). Rannie reaktsii kletok na ioniziruyushchie izlucheniya i ikh rol v zashchite i sensibilizatsii [Early cell response to ionizing radiation and their role in protecting and sensitization]. Moscow: Energoizdat [in Russian].

Published

2018-08-02

How to Cite

Litvinchuk, K. M., Lavrenchuk, H. Y., Gurando, V. R., Klishch, I. M., & Kovalchuk, A. O. (2018). 2-MERCAPTOBENZОTHIAZOLE RADIOPROTECTIVE EFFECT ON IN VITRO CELL CULTURE. Achievements of Clinical and Experimental Medicine, (2). https://doi.org/10.11603/1811-2471.2018.v0.i2.8914

Issue

Section

Оригінальні дослідження