THE ROLE OF KNEE MODULES IN RESTORING GAIT SYMMETRY IN PATIENTS AFTER TRANSFEMORAL AMPUTATION

Authors

DOI:

https://doi.org/10.11603/1811-2471.2025.v.i4.15807

Keywords:

prosthetic rehabilitation, gait after amputation, knee module, transfemoral amputation, gait biomechanics, adaptation to walking with a prosthesis

Abstract

SUMMARY. Transfemoral amputation (TFA) is one of the most complex types of amputation, leading to significant biomechanical and functional impairments, including gait asymmetry, low back pain, development of osteoarthritis of the contralateral limb, and an increased risk of falls. The choice of prosthetic knee module plays a decisive role in the rehabilitation process of patients after TFA, as it determines the quality, safety, and energy efficiency of gait. Modern microprocessor knee modules (MPKM) are a technological breakthrough in prosthetics, providing automatic resistance adjustment depending on the gait phase, speed of movement, and surface conditions, which contributes to the restoration of a more natural gait pattern.

The aim – to systematize, analyze, and critically evaluate existing scientific data on the impact of different types of prosthetic knee modules, in particular microprocessor-controlled ones, on the restoration of gait symmetry in patients after transfemoral amputation.

Material and Methods. An analytical review of the literature was conducted using the PubMed, Scopus, Web of Science, and Google Scholar databases. The following keywords were used for the search: prosthetic rehabilitation, gait after amputation, knee module, transfemoral amputation, gait biomechanics, prosthetic gait adaptation. Studies were selected that examined gait biomechanics, neuromotor adaptation, spatiotemporal parameters, and functional outcomes of MCM use.

Results. Analysis of the studies showed that the use of KMMs such as C-Leg and Genium contributes to increased safety, stability, and symmetry of gait. These modules reduce energy expenditure, improve movement control, reduce the load on the healthy limb, and reduce the likelihood of falls. In addition to biomechanical benefits, the use of MCMs has a positive effect on the psychological state, body image perception, and quality of life of patients. At the same time, there is a need for further research aimed at studying the long-term impact of MCMs on the level of activity and participation in social life.

Conclusions. Microprocessor knee modules are an effective means of improving gait symmetry and functional independence in patients after transfemoral amputation. Their use contributes to a reduction in compensatory movements, increased stability, and quality of life, confirming the feasibility of widespread implementation of MKM in clinical prosthetics and rehabilitation practice.

References

Myers M, Chauvin BJ. Above-the-Knee Amputations. [Updated 2023 Jun 12]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. Available from:https://www.ncbi.nlm.nih.gov/books/NBK544350/

Stevens PM, Wurdeman SR. Prosthetic Knee Selection for Individuals with Unilateral Transfemoral Amputation: A Clinical Practice Guideline. J Prosthet Orthot. 2019;31(1):2–8. DOI: 10.1097/JPO.0000000000000214 DOI: https://doi.org/10.1097/JPO.0000000000000214

Seth M, Coyle PC, Pohlig RT, Beisheim EH, Horne JR, Hicks GE, Sions JM. Gait asymmetry is associated with performance-based physical function among adults with lower-limb amputation. Physiother Theory Pract. 2022;38(13):3108–18. DOI: 10.1080/09593985.2021.1990449 DOI: https://doi.org/10.1080/09593985.2021.1990449

Kowal M, Winiarski S, Gieysztor E, Kołcz A, Walewicz K, Borowicz W, et al. Symmetry function in gait pattern analysis in patients after unilateral transfemoral amputation using a mechanical or microprocessor prosthetic knee. J Neuroeng Rehabil. 2021;18(1):9. DOI: 10.1186/s12984-021-00810-w DOI: https://doi.org/10.1186/s12984-021-00810-w

Sørensen IL, Berg GV. Facilitators and barriers that transfemoral amputees experience in their everyday life: a Norwegian qualitative study. Rehabil Res Pract. 2022;2022:2256621. DOI: 10.1155/2022/2256621 DOI: https://doi.org/10.1155/2022/2256621

Fuenzalida Squella SA, Kannenberg A, Brandão Benetti Â. Enhancement of a prosthetic knee with a microprocessor-controlled gait phase switch reduces falls and improves balance confidence and gait speed in community ambulators with unilateral transfemoral amputation. Prosthet Orthot Int. 2018;42(2):228–35. DOI: 10.1177/0309364617716207 DOI: https://doi.org/10.1177/0309364617716207

Ladlow P, Nightingale TE, McGuigan MP, Bennett AN, Phillip RD, Bilzon JLJ. Predicting ambulatory energy expenditure in lower limb amputees using multi-sensor methods. PLoS One. 2019;14(1):e0209249. DOI: 10.1371/journal.pone.0209249 DOI: https://doi.org/10.1371/journal.pone.0209249

De Marchis C, Ranaldi S, Varrecchia T, et al. Characterizing the gait of people with different types of amputation and prosthetic components through multimodal measurements: a methodological perspective. Front Rehabil Sci. 2022;3:804746. DOI: 10.3389/fresc.2022.804746 DOI: https://doi.org/10.3389/fresc.2022.804746

Hebenton J, Scott H, Seenan C, Davie-Smith F. Relationship between models of care and key rehabilitation milestones following unilateral transtibial amputation: a national cross-sectional study. Physiotherapy. 2019;105(4): 476–82. DOI: 10.1016/j.physio.2018.11.307 DOI: https://doi.org/10.1016/j.physio.2018.11.307

Ülger Ö, Yıldırım Şahan T, Çelik SE. A systematic literature review of physiotherapy and rehabilitation approaches to lower-limb amputation. Physiother Theory Pract. 2018;34(11):821–34. DOI: 10.1080/09593985.2018. 1425938 DOI: https://doi.org/10.1080/09593985.2018.1425938

Devan H, Carman A, Hendrick P, Hale L, Ribeiro DC. Spinal, pelvic, and hip movement asymmetries in people with lower-limb amputation: systematic review. J Rehabil Res Dev. 2015;52(1):1–19. DOI: 10.1682/JRRD.2014.05.0135 DOI: https://doi.org/10.1682/JRRD.2014.05.0135

Chen R, Corwell B, Yaseen Z, Hallett M, Cohen LG. Mechanisms of cortical reorganization in lower-limb amputees. J Neurosci. 1998;18(9):3443–50. DOI: 10.1523/JNEUROSCI.18-09-03443.1998 DOI: https://doi.org/10.1523/JNEUROSCI.18-09-03443.1998

Bell JC, Wolf EJ, Schnall BL, Tis JE, Tis LL, Potter BK. Transfemoral amputations: the effect of residual limb length and orientation on gait analysis outcome measures. J Bone Joint Surg Am. 2013;95(5):408–14. DOI: 10.2106/JBJS.K.01446 DOI: https://doi.org/10.2106/JBJS.K.01446

Kaufman KR, Bernhardt KA, Symms K. Functional assessment and satisfaction of transfemoral amputees with low mobility (FASTK2): a clinical trial of microprocessor-controlled vs non-microprocessor-controlled knees. Clin Biomech (Bristol). 2018;58:116–22. DOI:10.1016/j.clinbiomech.2018.07.012 DOI: https://doi.org/10.1016/j.clinbiomech.2018.07.012

Mileusnic MP, Rettinger L, Highsmith MJ, Hahn A. Benefits of the Genium microprocessor-controlled prosthetic knee on ambulation, mobility, activities of daily living and quality of life: a systematic literature review. Disabil Rehabil Assist Technol. 2021;16(5):453–64. DOI: 10.1080/17483107.2019.1648570 DOI: https://doi.org/10.1080/17483107.2019.1648570

Sivapuratharasu B, Bull AMJ, McGregor AH. Understanding low back pain in traumatic lower limb amputees: a systematic review. Arch Rehabil Res Clin Transl. 2019;1(1–2):100007. DOI: 10.1016/j.arrct.2019.100007 DOI: https://doi.org/10.1016/j.arrct.2019.100007

Li S, Cao W, Yu H, Meng Q, Chen W. Physiological parameters analysis of transfemoral amputees with different prosthetic knees. Acta Bioeng Biomech. 2019;21(3):135–42.

Ingraham KA, Fey NP, Simon AM, Hargrove LJ. Assessing the relative contributions of active ankle and knee assistance to the walking mechanics of transfemoral amputees using a powered prosthesis. PLoS One. 2016;11(1):e0147661. DOI: 10.1371/journal.pone.0147661 DOI: https://doi.org/10.1371/journal.pone.0147661

Prinsen EC, Nederhand MJ, Sveinsdóttir HS, et al. The influence of a user-adaptive prosthetic knee across varying walking speeds: a randomized cross-over trial. Gait Posture. 2017;51:254–60. DOI: 10.1016/j.gaitpost.2016.11.015 DOI: https://doi.org/10.1016/j.gaitpost.2016.11.015

Saglam Y, Gulenc B, Birisik F, Ersen A, Yilmaz Yalcinkaya E, Yazicioglu O. The quality of life analysis of knee prosthesis with complete microprocessor control in transfemoral amputees. Acta Orthop Traumatol Turc. 2017;51(6):466–9. DOI: 10.1016/j.aott.2017.10.009 DOI: https://doi.org/10.1016/j.aott.2017.10.009

Morgan SJ, Friedly JL, Nelson IK, Rosen RE, Humbert AT, Hafner BJ. The effects of microprocessor prosthetic knee use in early rehabilitation: a pilot randomized controlled trial. PM R. 2025;17(4):371–83. DOI: 10.1002/pmrj.13321 DOI: https://doi.org/10.1002/pmrj.13321

Şen Eİ, Aydın T, Buğdaycı D, Kesiktaş FN. Effects of microprocessor-controlled prosthetic knees on self-reported mobility, quality of life, and psychological states in patients with transfemoral amputations. Acta Orthop Traumatol Turc. 2020;54(5):502–6. DOI: 10.5152/j.aott.2020. 19269 DOI: https://doi.org/10.5152/j.aott.2020.19269

Schafer ZA, Perry JL, Vanicek N. A personalised exercise programme for individuals with lower limb amputation reduces falls and improves gait biomechanics: a block randomised controlled trial. Gait Posture. 2018;63:282–9. DOI:10.1016/j.gaitpost.2018.04.030 DOI: https://doi.org/10.1016/j.gaitpost.2018.04.030

Mohanty RK, Mohanty RC, Sabut SK. A systematic review on design technology and application of polycentric prosthetic knee in amputee rehabilitation. Phys Eng Sci Med. 2020;43(3):781–98. DOI: 10.1007/s13246-020-00882-3 DOI: https://doi.org/10.1007/s13246-020-00882-3

Price MA, Beckerle P, Sup FC. Design optimization in lower limb prostheses: a review. IEEE Trans Neural Syst Rehabil Eng. 2019;27(8):1574–88. DOI: 10.1109/TNSRE. 2019.2927094 DOI: https://doi.org/10.1109/TNSRE.2019.2927094

Clemens S, Kim KJ, Gailey R, Kirk-Sanchez N, Kristal A, Gaunaurd I. Inertial sensor-based measures of gait symmetry and repeatability in people with unilateral lower limb amputation. Clin Biomech (Bristol). 2020; 72:102–7. DOI: 10.1016/j.clinbiomech.2019.12.007 DOI: https://doi.org/10.1016/j.clinbiomech.2019.12.007

Lansade C, Bonnet X, Marvisi N, Facione J, Villa C, Pillet H. Estimation of the body center of mass velocity during gait of people with transfemoral amputation from force plate data integration. Clin Biomech (Bristol). 2021;88:105423. DOI: 10.1016/j.clinbiomech.2021.105423 DOI: https://doi.org/10.1016/j.clinbiomech.2021.105423

Esquenazi A. Gait analysis in lower-limb amputation and prosthetic rehabilitation. Phys Med Rehabil Clin N Am. 2014;25(1):153–67. DOI: 10.1016/j.pmr.2013.09.006 DOI: https://doi.org/10.1016/j.pmr.2013.09.006

Wanamaker AB, Andridge RR, Chaudhari AM. When to biomechanically examine a lower-limb amputee: a systematic review of accommodation times. Prosthet Orthot Int. 2017;41(5):431–45. DOI: 10.1177/ 0309364616682385 DOI: https://doi.org/10.1177/0309364616682385

Mehryar P, Shourijeh MS, Rezaeian T, et al. Muscular activity comparison between non-amputees and transfemoral amputees during normal transient-state walking speed. Med Eng Phys. 2021;95:39–44. DOI: 10.1016/j.medengphy.2021.07.004 DOI: https://doi.org/10.1016/j.medengphy.2021.07.004

Huang S, Ferris DP. Muscle activation patterns during walking from transtibial amputees recorded within the residual limb-prosthetic interface. J Neuroeng Rehabil. 2012;9:55. DOI: 10.1186/1743-0003-9-55 DOI: https://doi.org/10.1186/1743-0003-9-55

Published

2026-02-09

How to Cite

Stelmakh, H. O., Kamyshna, I. I., Bakaliuk, T. H., & Fomenko, Y. P. (2026). THE ROLE OF KNEE MODULES IN RESTORING GAIT SYMMETRY IN PATIENTS AFTER TRANSFEMORAL AMPUTATION. Achievements of Clinical and Experimental Medicine, (4), 27–33. https://doi.org/10.11603/1811-2471.2025.v.i4.15807

Issue

Section

Literature reviews