MOLECULAR HYDROGEN AS A MODULATOR OF OXIDATIVE STRESS AND INFLAMMATION IN DOXORUBICIN-INDUCED TOXICITY
DOI:
https://doi.org/10.11603/1811-2471.2025.v.i3.15557Keywords:
molecular hydrogen, doxorubicin, oxidative stress, TNF-α, IL-1β, antioxidant defense, subchronic toxicity, ratsAbstract
SUMMARY. Doxorubicin is an effective anthracycline widely used in chemotherapy, but its clinical use is limited by toxic side effects, especially cardiotoxicity associated with oxidative stress and inflammation. Molecular hydrogen (H2) exhibits antioxidant and anti-inflammatory properties by selectively neutralizing hydroxyl radicals and peroxynitrite.
The aim – to investigate the effect of molecular hydrogen-enriched water on oxidative stress and inflammation in doxorubicin-induced toxicity in rats.
Material and Methods. The experiment was conducted on adult male rats randomized into four groups: control, doxorubicin (DOX), doxorubicin + hydrogen-enriched water (DOX+H2-water), and hydrogen-enriched water (H2-water). Intraperitoneal injections of doxorubicin were administered at a dose of 5 mg/kg, with a cumulative dose of 20 mg/kg. Rats were sacrificed on the 29th day of the experiment. Levels of pro-inflammatory cytokines (TNF-α, IL-1β), oxidative stress markers (MDA, 8-isoprostane, carbonyl groups), antioxidant enzyme activities (catalase, superoxide dismutase), and reduced glutathione content were measured.
Results. Doxorubicin significantly increased the level of pro-inflammatory cytokines, enhanced oxidative stress and elevated lipid and protein peroxidation: increased levels of MDA, 8-isoprostane, and protein carbonyl groups were observed. At the same time, the suppression of activity of catalase, superoxide dismutase and reduced glutathione levels confirmed the inhibition of antioxidant defense. Consumption of hydrogen-enriched water reduced pro-inflammatory cytokines by 33–35%, decreased oxidative stress markers, and improved antioxidant defense. Consumption of hydrogen-enriched water did not cause deviations in indices compared to control group animals.
Conclusions. Molecular hydrogen-enriched water effectively attenuates doxorubicin-induced oxidative stress and inflammation by modulating the pro-oxidant-antioxidant balance and cytokines profile. This approach is promising as an adjunct therapy to reduce anthracycline antibiotic toxicity without compromising antitumor efficacy. Further research into the mechanisms of molecular hydrogen action in clinical settings is recommended.
References
Denysova MV, Strutyns'ka NA, Mys' LA, Korkach YUP, Rozova KV, Sahach VF. Rozvytok mitokhondrial'noyi dysfunktsiyi pry hostriy kardiotoksychniy diyi doksorubitsynu u doroslykh shchuriv [Development of mitochondrial dysfunction during acute cardiotoxic action of doxorubicin in adult rats]. Fiziolohichnyy zhurnal. 2023;69(6):3-14. Ukrainian. DOI: https://doi.org/10.15407/fz69.06.003
Spears N, Lopes F, Stefansdottir A, Rossi V, De Felici M, Anderson RA, Klinger FG. Ovarian damage from chemotherapy and current approaches to its protection. Hum Reprod Update. 2019;25(6):673-693. DOI:10.1093/humupd/dmz027 DOI: https://doi.org/10.1093/humupd/dmz027
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med. 2023;93:101205. DOI:10.1016/J.MAM.2023.101205 DOI: https://doi.org/10.1016/j.mam.2023.101205
Vitale R, Marzocco S, Popolo A. Role of Oxidative Stress and Inflammation in Doxorubicin-Induced Cardiotoxicity: A Brief Account. Int J Mol Sci. 2024;25(13):7477. DOI:10.3390/IJMS25137477 DOI: https://doi.org/10.3390/ijms25137477
Li Y, Yan J, Yang P. The mechanism and therapeutic strategies in doxorubicin-induced cardiotoxicity: Role of programmed cell death. Cell Stress Chaperones. 2024;29(5):666. DOI:10.1016/J.CSTRES.2024.09.001 DOI: https://doi.org/10.1016/j.cstres.2024.09.001
Songbo M, Lang H, Xinyong C, Bin X, Ping Z, Liang S. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett. Published online 2019. DOI:10.1016/j.toxlet. 2019.02.013 DOI: https://doi.org/10.1016/j.toxlet.2019.02.013
Kciuk M, Gielecińska A, Mujwar S, Kołat D, Kałuzińska-Kołat Ż, Celik I, Kontek R. Doxorubicin – An Agent with Multiple Mechanisms of Anticancer Activity. Cells. 2023;12(4):659. DOI:10.3390/CELLS12040659 DOI: https://doi.org/10.3390/cells12040659
Xie L, Xue F, Cheng C, Sui W, Zhang J, Meng L, Lu Y, Xiong W, Bu P, Xu F, Yu X, Xi B, Zhong L, Yang J, Zhang C, Zhang Y. Cardiomyocyte-specific knockout of ADAM17 alleviates doxorubicin-induced cardiomyopathy via inhibiting TNFα–TRAF3–TAK1–MAPK axis. Signal Transduct Target Ther. 2024;9(1):273. DOI:10.1038/S41392-024-01977-Z DOI: https://doi.org/10.1038/s41392-024-01977-z
Gullestad L, Ueland T, Vinge LE, Finsen A, Yndestad A, Aukrust P. Inflammatory cytokines in heart failure: mediators and markers. Cardiology. 2012;122(1):23-35. DOI:10.1159/000338166 DOI: https://doi.org/10.1159/000338166
Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL. Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol. 2012;52(6):1213-1225. DOI:10.1016/j.yjmcc.2012.03.006 DOI: https://doi.org/10.1016/j.yjmcc.2012.03.006
LeBaron TW, Kura B, Kalocayova B, Tribulova N, Slezak J. A new approach for the prevention and treatment of cardiovascular disorders. Molecular hydrogen significantly reduces the effects of oxidative stress. Molecules. 2019;24(11):2076. DOI:10.3390/molecules24112076 DOI: https://doi.org/10.3390/molecules24112076
Xie K, Zhang Y, Wang Y, Meng X, Wang Y, Yu Y, Chen H. Hydrogen attenuates sepsis-associated encephalopathy by NRF2 mediated NLRP3 pathway inactivation. Inflamm Res. 2020;69(7):697-710. DOI:10.1007/s00011-020-01347-9 DOI: https://doi.org/10.1007/s00011-020-01347-9
Ma T, Yang L, Zhang B, Lv X, Gong F, Yang W. Hydrogen inhalation enhances autophagy via the AMPK/mTOR pathway, thereby attenuating doxorubicin-induced cardiac injury. Int Immunopharmacol. 2023;119:110071. DOI:10.1016/J.INTIMP.2023.110071 DOI: https://doi.org/10.1016/j.intimp.2023.110071
Dhingra R, Rabinovich-Nikitin I, Rothman S, Guberman M, Gang H, Margulets V, Jassal DS, Alagarsamy KN, Dhingra S, Valenzuela Ripoll C, Billia F, Diwan A, Javaheri A, Kirshenbaum LA. Proteasomal Degradation of TRAF2 Mediates Mitochondrial Dysfunction in Doxorubicin-Cardiomyopathy. Circulation. 2022;146(12):934. DOI:10. 1161/CIRCULATIONAHA.121.058411 DOI: https://doi.org/10.1161/CIRCULATIONAHA.121.058411
Hekmat AS, Navabi Z, Alipanah H, Javanmardi K. Alamandine significantly reduces doxorubicin-induced cardiotoxicity in rats. Hum Exp Toxicol. 2021;40(10):1781-1795. DOI:10.1177/09603271211010896 DOI: https://doi.org/10.1177/09603271211010896
Naka KK, Vezyraki P, Kalaitzakis A, Zerikiotis S, Michalis L, Angelidis C. Hsp70 regulates the doxorubicin-mediated heart failure in Hsp70-transgenic mice. Cell Stress Chaperones. 2014;19(6):853. DOI:10.1007/S12192-014-0509-4 DOI: https://doi.org/10.1007/s12192-014-0509-4
Eid BG, El-Shitany NAEA, Neamatallah T. Trimetazidine improved adriamycin-induced cardiomyopathy by downregulating TNF-α, BAX, and VEGF immunoexpression via an antioxidant mechanism. Environ Toxicol. 2021;36(6):1217-1225. DOI:10.1002/TOX.23120, DOI: https://doi.org/10.1002/tox.23120
Bobkova LS, Bukhtiarova TA, Luk'yanchuk VD, Yadlovs'kyy OYE. Syhnal'ni, mediatorni ta efektorni mekhanizmy protyzapal'noyi diyi likars'kykh preparativ i biolohichno aktyvnykh rechovyn riznoyi pryrody [Signaling, mediator and effector mechanisms of anti-inflammatory action of drugs and biologically active substances of various nature]. Farmakolohiya ta likars'ka toksykolohiya. 2025;19(2):115-135. Ukrainian. DOI:10.33250/19.02.115. DOI: https://doi.org/10.33250/19.02.115
Fang G, Li X, Yang F, Huang T, Qiu C, Peng K, Wang Z, Yang Y, Lan C. Amentoflavone mitigates doxorubicin-induced cardiotoxicity by suppressing cardiomyocyte pyroptosis and inflammation through inhibition of the STING/NLRP3 signalling pathway. Phytomedicine. 2023;117:154922. DOI:10.1016/j.phymed.2023.154922 DOI: https://doi.org/10.1016/j.phymed.2023.154922
Pienia̧zek A, Czepas J, Piasecka-Zelga J, Gwoådziński K, Koceva-Chyła A. Oxidative stress induced in rat liver by anticancer drugs doxorubicin, paclitaxel and docetaxel. Adv Med Sci. 2013;58(1):104-111. DOI:10.2478/v10039-012-0063-1 DOI: https://doi.org/10.2478/v10039-012-0063-1
Espírito Santo SG, Monte MG, Polegato BF, Barbisan LF, Romualdo GR. Protective Effects of Omega-3 Supplementation against Doxorubicin-Induced Deleterious Effects on the Liver and Kidneys of Rats. Molecules. 2023;28(7):3004. DOI:10.3390/molecules28073004 DOI: https://doi.org/10.3390/molecules28073004
Prasanna PL, Renu K, Valsala Gopalakrishnan A. New molecular and biochemical insights of doxorubicin-induced hepatotoxicity. Life Sci. 2020;250:117599. DOI:10.1016/J.LFS.2020.117599 DOI: https://doi.org/10.1016/j.lfs.2020.117599
Frenkel' YUD, Cherno VS, Kostenko VO. Induktsiya transkryptsiynoho faktora Nrf2 pryhnichuye produktsiyu aktyvnykh form kysnyu i azotu v pechintsi shchuriv pry modelyuvanni metabolichnoho syndromu za umov tsilodobovoho osvitlennya [Induction of the transcription factor Nrf2 suppresses the production of reactive oxygen and nitrogen species in the liver of rats in the modeling of metabolic syndrome under conditions of 24-hour lighting]. Aktual'ni problemy suchasnoyi medytsyny: Visnyk Ukrayins'koyi medychnoyi stomatolohichnoyi akademiyi. 2022; 22(1):129-133. Ukrainian. DOI:10.31718/2077-1096. 22.1.129 DOI: https://doi.org/10.31718/2077-1096.22.1.129
Cuadrado A, Cazalla E, Bach A, Bathish B, Naidu SD, DeNicola GM, Dinkova-Kostova AT, Fernández-Ginés R, Grochot-Przeczek A, Hayes JD, Kensler TW, León R, Liby KT, López MG, Manda G, Shivakumar AK, Hakomäki H, Moerland JA, Motohashi H, Rojo AI, Sykiotis GP, Taguchi K, Valverde ÁM, Yamamoto M, Levonen AL. Health position paper and redox perspectives – Bench to bedside transition for pharmacological regulation of NRF2 in noncommunicable diseases. Redox Biol. 2025;81:103569. DOI:10.1016/J.REDOX.2025.103569 DOI: https://doi.org/10.1016/j.redox.2025.103569
Shakya A, McKee NW, Dodson M, Chapman E, Zhang DD. Anti-Ferroptotic Effects of Nrf2: Beyond the Antioxidant Response. Mol Cells. 2023;46(3):165-175. DOI:10.14348/MOLCELLS.2023.0005 DOI: https://doi.org/10.14348/molcells.2023.0005
Shevchuk OO, Posokhova EA, Sakhno LA, Nikolaev VG. Theoretical ground for adsorptive therapy of anthracyclines cardiotoxicity. Exp Oncol. 2012;34(4):314-322.
Glorieux C, Calderon PB. Catalase, a remarkable enzyme: Targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol Chem. 2017; 398(10):1095-1108. DOI:10.1515/HSZ-2017-0131/ASSET/GRAPHIC/J_HSZ-2017-0131_FIG_001.JPG DOI: https://doi.org/10.1515/hsz-2017-0131
Pokotylo OO, Pokotylo OS, Korda MM. Efekty biolohichnoyi diyi molekulyarnoho vodnyu [Effects of biological action of molecular hydrogen]. Medychna ta klinichna khimiya. 2023;(2):102-121. Ukrainian. DOI:10. 11603/MCCH.2410-681X.2023.I2.13980 DOI: https://doi.org/10.11603/mcch.2410-681X.2023.i2.13980
Mukhopadhyay P, Rajesh M, Bátkai S, Kashiwaya Y, Haskó G, Liaudet L, Szabó C, Pacher P. Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. Am J Physiol - Hear Circ Physiol. 2009; 296(5):H1466-1483. DOI:10.1152/AJPHEART.00795.2008 DOI: https://doi.org/10.1152/ajpheart.00795.2008
Pacher P, Beckman JS, Liaudet L. Nitric Oxide and Peroxynitrite in Health and Disease. Physiol Rev. 2007;87(1):315-424. DOI:10.1152/PHYSREV.00029.2006 DOI: https://doi.org/10.1152/physrev.00029.2006