THE MICROBIOME AS A SYSTEMIC REGULATOR OF HUMAN HEALTH: CURRENT CONCEPTS AND PERSPECTIVES
DOI:
https://doi.org/10.11603/1811-2471.2025.v.i3.15548Keywords:
human microbiome, homeostasis, metabolism, biotopes, microbial balanceAbstract
Summary. This article highlights the evolutionary and functional aspects of the microbiota and its importance for human health, particularly in the context of systemic regulation.
The aim – to summarise current data on the importance of the microbiome in maintaining human body homeostasis, in particular the gut microbiome, and to assess the impact of different microbiota biotopes on physiological processes.
Material and Methods. To achieve this goal, we performed a systematic analysis of the scientific literature on the formation of the human microbiota during ontogeny and its role in the regulation of physiological processes. The information search was carried out using scientometric databases and electronic platforms such as PubMed, Medline, Scopus, Medscape and Google Scholar. Modern scientific sources covering evolutionary, structural and functional aspects of the human microbiome were included in the analysis. A systematic analytical approach was used to summarise the data obtained.
Results. The article looks at how the human microbiome has evolved and how it works. It discusses how microbiota formation during ontogenesis affects physiological processes. It focuses on the gut microbiome as a unique ecosystem that stabilises the body's internal environment, affecting metabolic, immune and neurohumoral processes. It also considers other biotopes, such as the skin, oral cavity, lungs, placenta and female reproductive system, which are important in maintaining the body's homeostasis. It emphasises that even organs that were previously sterile may contain microbiome communities with functional significance.
Conclusions.The human microbiome, especially the gut microbiome, plays a key role in maintaining health by interacting with the immune, metabolic and neurohumoral systems of the body. Maintaining its balance is essential for disease prevention and maintaining the body's physiological balance. Modern methods of metagenomics and metabolomics allow us to better understand how the microbiome interacts with the body, which opens up new perspectives for medical practice.
References
Yankovs'kyy DS, Shyrobokov VP, Dyment HS. Mikrobiom. [Microbiome]. Kyiv: FOP Veres; 2017. Ukrainian.
Bobyr VV, Nazarchuk OA, Paliy VG, Kryzhanovska AV, Bobyr NA, Vlasenko IG, Zhemera NA. The human microbiome and modern approaches to its preservation (analytical review). Reports of Vinnytsia National Medical University, 2023; 27(3):495-500. DOI: 10.31393/reports-vnmedical-2023-27(3)-23. Ukrainian. DOI: https://doi.org/10.31393/reports-vnmedical-2023-27(3)-23
Yankovs'kyy DS, Shyrobokov VP, Dyment HS. Mikrobiom u fiziolohii liudyny [Microbiome in human physiology]. Infektsiyni Khvoroby - Infectious Diseases. 2018; 3: 5-17. DOI: 10.11603/1681-2727.2018.3.9407 Ukrainian. DOI: https://doi.org/10.11603/1681-2727.2018.3.9407
Etymologia: Escherichia coli. Emerging Infectious Diseases, 2015; Vol. 21( 8); 1310. DOI: 10.3201/eid2108.ET2108 DOI: https://doi.org/10.3201/eid2108.ET2108
Poppleton DI, Duchateau M, Hourdel V, Matondo M, Flechsler J, Klingl A, Beloin C, Gribaldo S. Outer Membrane Proteome of Veillonella parvula: A Diderm Firmicute of the Human Microbiome. Front Microbiol. 2017 Jun 30;8:1215. DOI: 10.3389/fmicb.2017.01215. DOI: https://doi.org/10.3389/fmicb.2017.01215
O'Callaghan A, van Sinderen D. Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Front Microbiol. 2016 Jun 15;7:925.DOI: 10.3389/fmicb. 2016.00925 DOI: https://doi.org/10.3389/fmicb.2016.00925
Wu J, Wang K, Wang X, Pang Y, Jiang C. The role of the gut microbiome and its metabolites in metabolic diseases. Protein Cell. 2021 May;12(5):360-373. DOI: 10.1007/s13238-020-00814-7 DOI: https://doi.org/10.1007/s13238-020-00814-7
Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. Curr Opin Gastroenterol. 2015 Jan;31(1):69-75. DOI: 10.1097/MOG.0000000000000139 DOI: https://doi.org/10.1097/MOG.0000000000000139
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013 Jan 7;41(1):e1. DOI: 10.1093/nar/gks808 DOI: https://doi.org/10.1093/nar/gks808
Klymniuk SI, Kravets' NYa, Oliynyk NM, Volch OM, Zahrychuk NYa, Tkachuk NI. Mikrobiom orhanizmu liudyny: navch. Posibnyk [Microbiome of the human body: a textbook]. Ternopil': Osadna Yu.V, 2023. Ukrainian.
Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, Cox LM, Amir A, Gonzalez A, Bokulich NA, Song SJ, Hoashi M, Rivera-Vinas JI, Mendez K, Knight R, Clemente JC. Partial restoration of the microbiota of Cesarean-born infants via vaginal microbial transfer. Nat Med. 2016 Mar;22(3):250-3. DOI: 10.1038/nm.4039 DOI: https://doi.org/10.1038/nm.4039
Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, Armanini F, Truong DT, Manara S, Zolfo M, Beghini F, Bertorelli R, De Sanctis V, Bariletti I, Canto R, Clementi R, Cologna M, Crifò T, Cusumano G, Gottardi S, Innamorati C, Masè C, Postai D, Savoi D, Duranti S, Lugli GA, Mancabelli L, Turroni F, Ferrario C, Milani C, Mangifesta M, Anzalone R, Viappiani A, Yassour M, Vlamakis H, Xavier R, Collado CM, Koren O, Tateo S, Soffiati M, Pedrotti A, Ventura M, Huttenhower C, Bork P, Segata N. Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome. Cell Host Microbe. 2018 Jul 11;24(1):133-145.e5.DOI: 10.1016/j.chom.2018.06.005 DOI: https://doi.org/10.1016/j.chom.2018.06.005
Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat Med. 2018 Apr 10;24(4):392-400. DOI: 10.1038/nm.4517 DOI: https://doi.org/10.1038/nm.4517
Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, Belzer C, Delgado Palacio S, Arboleya Montes S, Mancabelli L, Lugli GA, Rodriguez JM, Bode L, de Vos W, Gueimonde M, Margolles A, van Sinderen D, Ventura M. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol Mol Biol Rev. 2017 Nov 8;81(4):e00036-17.DOI: 10.1128/mmbr.00036-17 DOI: https://doi.org/10.1128/MMBR.00036-17
Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, Mele MC. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms. 2019 Jan 10;7(1):14. DOI: 10.3390/microorganisms7010014 DOI: https://doi.org/10.3390/microorganisms7010014
Hu L, Xu Y, Li J, Zhang M, Sun Z, Ban Y, Tian X, Liu D, Hu L. Gut microbiome characteristics of women with hypothyroidism during early pregnancy detected by 16S rRNA amplicon sequencing and shotgun metagenomic. Front Cell Infect Microbiol. 2024 Aug 9;14:1369192. DOI:10.3389/fcimb.2024.1369192 DOI: https://doi.org/10.3389/fcimb.2024.1369192
Álvarez J, Fernández Real JM, Guarner F, Gueimonde M, Rodríguez JM, Saenz de Pipaon M, Sanz Y. Gut microbes and health. Gastroenterol Hepatol. 2021 Aug-Sep;44(7):519-535. DOI: 10.1016/j.gastrohep.2021.01.009 DOI: https://doi.org/10.1016/j.gastre.2021.01.002
Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K, Perederiy V, Gavalko Y, Dorofeyev A, Romanenko M, Tkach S, Sineok L, Lushchak O, Vaiserman A. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017 May 22;17(1):120. DOI: 10.1186/s12866-017-1027-1 DOI: https://doi.org/10.1186/s12866-017-1027-1
Stein RA, DePaola RV. Human endogenous retroviruses: our genomic fossils and companions. Physiol Genomics. 2023 Jun 1;55(6):249-258. DOI: 10.1152/physiolgenomics.00171.2022 DOI: https://doi.org/10.1152/physiolgenomics.00171.2022
Liu S, Lu H, Zhang S, Shi Y, Chen Q. Phages against Pathogenic Bacterial Biofilms and Biofilm-Based Infections: A Review. Pharmaceutics. 2022 Feb 16;14(2):427. DOI: 10.3390/pharmaceutics14020427 DOI: https://doi.org/10.3390/pharmaceutics14020427
Fu Y, Lyu J, Wang S. The role of intestinal microbes on intestinal barrier function and host immunity from a metabolite perspective. Front Immunol. 2023 Oct 9;14:1277102. DOI: 10.3389/fimmu.2023.1277102 DOI: https://doi.org/10.3389/fimmu.2023.1277102
Gong T, Fu J, Shi L, Chen X, Zong X. Antimicrobial Peptides in Gut Health: A Review. Front Nutr. 2021 Sep 30;8:751010. DOI: 10.3389/fnut.2021.751010 DOI: https://doi.org/10.3389/fnut.2021.751010
Salvi PS, Cowles RA. Butyrate and the Intestinal Epithelium: Modulation of Proliferation and Inflammation in Homeostasis and Disease. Cells. 2021 Jul 14;10(7):1775. DOI: 10.3390/cells10071775 DOI: https://doi.org/10.3390/cells10071775
Chen Y, Xiao L, Zhou M, Zhang H. The microbiota: a crucial mediator in gut homeostasis and colonization resistance. Front Microbiol. 2024 Aug 6;15:1417864. DOI: 10.3389/fmicb.2024.1417864 DOI: https://doi.org/10.3389/fmicb.2024.1417864
Aghamohammad S, Sepehr A, Miri ST, Najafi S, Rohani M, Pourshafiea MR. The effects of the probiotic cocktail on modulation of the NF-kB and JAK/STAT signaling pathways involved in the inflammatory response in bowel disease model. BMC Immunol. 2022 Mar 3;23(1):8. DOI: 10.1186/s12865-022-00484-6 DOI: https://doi.org/10.1186/s12865-022-00484-6
Flannigan KL, Denning TL. Segmented filamentous bacteria-induced immune responses: a balancing act between host protection and autoimmunity. Immunology. 2018 May 17;154(4):537–46. DOI: 10.1111/imm.12950 DOI: https://doi.org/10.1111/imm.12950
Fülling C, Dinan TG, Cryan JF. Gut Microbe to Brain Signaling: What Happens in Vagus…. Neuron. 2019 Mar 20;101(6):998-1002. DOI: 10.1016/j.neuron.2019. 02.008 DOI: https://doi.org/10.1016/j.neuron.2019.02.008
Fiore A, Murray PJ. Tryptophan and indole metabolism in immune regulation. Curr Opin Immunol. 2021 Jun;70:7-14.DOI: 10.1016/j.coi.2020.12.001 DOI: https://doi.org/10.1016/j.coi.2020.12.001
Adamu A, Li S, Gao F, Xue G. The role of neuroinflammation in neurodegenerative diseases: current understanding and future therapeutic targets. Front Aging Neurosci. 2024 Apr 12;16:1347987. DOI: 10.3389/fnagi.2024.1347987 DOI: https://doi.org/10.3389/fnagi.2024.1347987
Willis JR, Gabaldón T. The Human Oral Microbiome in Health and Disease: From Sequences to Ecosystems. Microorganisms. 2020 Feb 23;8(2):308. DOI: 10.3390/microorganisms8020308 DOI: https://doi.org/10.3390/microorganisms8020308
Baker JL, Bor B, Agnello M, Shi W, He X. Ecology of the Oral Microbiome: Beyond Bacteria. Trends Microbiol. 2017 May;25(5):362-374.DOI: 10.1016/j.tim.2016.12.012 DOI: https://doi.org/10.1016/j.tim.2016.12.012
Kilian M, Chapple IL, Hannig M, Marsh PD, Meuric V, Pedersen AM, Tonetti MS, Wade WG, Zaura E. The oral microbiome – an update for oral healthcare professionals. Br Dent J. 2016 Nov 18;221(10):657-666.DOI: 10.1038/sj.bdj.2016.865 DOI: https://doi.org/10.1038/sj.bdj.2016.865
Li R, Li J, Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct Target Ther. 2024 Jan 17;9(1):19. DOI: 10.1038/s41392-023-01722-y DOI: https://doi.org/10.1038/s41392-023-01722-y
Smythe P, Wilkinson HN. The Skin Microbiome: Current Landscape and Future Opportunities. Int J Mol Sci. 2023 Feb 16;24(4):3950. DOI: 10.3390/ijms24043950 DOI: https://doi.org/10.3390/ijms24043950
Dong W, Wang S, Wang X, Xu G, Liu Q, Li Z, Lv N, Pan Y, Xiong Q, Liu D, Zhu B. Characteristics of Vaginal Microbiota of Women of Reproductive Age with Infections. Microorganisms. 2024 May 20;12(5):1030. DOI: 10.3390/microorganisms12051030 DOI: https://doi.org/10.3390/microorganisms12051030