FEATURES OF THE INFLUENCE OF GUT MICROBIOTA ON HIGHER BRAIN FUNCTIONS
DOI:
https://doi.org/10.11603/1811-2471.2025.v.i2.15274Keywords:
gut microbiota, diet, brain function, gut-brain axis, cognitive functionAbstract
SUMMARY. The aim – to analyze modern systematic reviews and studies devoted to the influence of diet on higher brain activity through the modulation of gut microbiota.
Material and Methods. A search was conducted in the PubMed, Scopus and Web of Science databases among publications over the last 10 years (2014–2024) using the keywords: “gut microbiota”, “diet”, “brain function”, “gut-brain axis”. The review included 25 systematic reviews and experimental studies that met the criteria: the presence of an assessment of the dietary modification impact on cognitive functions through changes in the microbiota.
Results. Over the past ten years, researchers have increasingly paid attention to the role of the gut microbiota in the regulation of brain functions and behavior. Accumulating evidence suggests that disruption of the microbiota, for example due to an unbalanced diet, stress or inflammatory processes, can contribute to the development of affective disorders, including depression. Dietary habits are one of the main factors determining the composition of the microbiota throughout a person’s life. Several mechanisms of interaction between the gut and the brain have been identified, including microbial metabolites, immune responses, neural and metabolic processes. Some of these pathways can be modified by diet. In particular, a diet rich in prebiotics, probiotics and polyunsaturated fatty acids is associated with improved cognitive function and reduced anxiety levels. In this context, studies that demonstrate the possibility of modulating mental health by correcting the microbiota - through probiotics, prebiotics, dietary changes and effects on metabolic pathways - are of particular interest. In the future, such approaches may complement traditional psychiatric therapy, in particular in the treatment of depression.
Conclusions: There is a strong evidence base that suggests that diet influences brain function through the gut microbiota. Further research is needed to better understand the molecular mechanisms and identify effective dietary interventions to improve neuropsychological health.
References
Gulas E, Wysiadecki G, Strzelecki D, Gawlik-Kotelnicka O, Polguj M. Can microbiology affect psychiatry? A link between gut microbiota and psychiatric disorders. Psychiatr Pol. 2018;52(6):1023–39. DOI: 10.12740/PP/OnlineFirst/81103. DOI: https://doi.org/10.12740/PP/OnlineFirst/81103
Kho ZY, Lal SK. The human gut microbiome – a potential controller of wellness and disease. Front Microbiol. 2018;9:1835. DOI: 10.3389/fmicb.2018.01835. DOI: https://doi.org/10.3389/fmicb.2018.01835
Singh R, Zogg H, Wei L, Bartlett A, Ghoshal UC, Rajender S, Ro S. Gut microbial dysbiosis in the pathogenesis of gastrointestinal dysmotility and metabolic disorders. J Neurogastroenterol Motil. 2021;27(1):19–34. DOI: 10.5056/ jnm20149. DOI: https://doi.org/10.5056/jnm20149
Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:k2179. DOI: 10.1136/bmj.k2179. DOI: https://doi.org/10.1136/bmj.k2179
Lazar V, Ditu LM, Pircalabioru GG, Gheorghe I, Curutiu C, Holban AM, et al. Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Front Immunol. 2018;9:1830. DOI: 10.3389/fimmu.2018.01830. DOI: https://doi.org/10.3389/fimmu.2018.01830
Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun. 2014;38:1–12. DOI: https://doi.org/10.1016/j.bbi.2013.12.015
Martin AM, Sun EW, Rogers GB, Keating DJ. The influence of the gut microbiome on host metabolism through the regulation of gut hormone release. Front Physiol. 2019;10:428. DOI: 10.3389/fphys.2019.00428. DOI: https://doi.org/10.3389/fphys.2019.00428
Galland L. The gut microbiome and the brain. J Med Food. 2014;17(12):1261–72. DOI: https://doi.org/10.1089/jmf.2014.7000
Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18(7):965–77. DOI: 10.1038/nn.4030. DOI: https://doi.org/10.1038/nn.4030
Cox LM, Weiner HL. Microbiota signaling pathways that influence neurologic disease. Neurotherapeutics. 2018;15(1):135–45. DOI: 10.1007/s13311-017-0598-8. DOI: https://doi.org/10.1007/s13311-017-0598-8
Fusco W, Lorenzo MB, Cintoni M, Porcari S, Rinninella E, Kaitsas F, et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients. 2023;15(9):2211. DOI: 10.3390/nu15092211. DOI: https://doi.org/10.3390/nu15092211
Donoso F, Cryan JF, Olavarría-Ramírez L, Nolan YM, Clarke G. Inflammation, lifestyle factors, and the microbiome–gut–brain axis: relevance to depression and antidepressant action. Clin Pharmacol Ther. 2022. DOI: 0.1002/cpt.2581.
Jenkins TA, Nguyen JC, Polglaze KE, Bertrand PP. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut–brain axis. Nutrients. 2016;8(1):56. DOI: 10.3390/nu8010056. DOI: https://doi.org/10.3390/nu8010056
Terry N, Margolis KG. Serotonergic mechanisms regulating the GI tract: experimental evidence and therapeutic relevance. Handb Exp Pharmacol. 2017;239:319–42. DOI: 10.1007/164_2016_103. DOI: https://doi.org/10.1007/164_2016_103
Xue C, Li G, Zheng Q, Gu X, Shi Q, Su Y, et al. Tryptophan metabolism in health and disease. Cell Metab. 2023. DOI: 10.1016/j.cmet.2023.06.004. DOI: https://doi.org/10.1016/j.cmet.2023.06.004
Góralczyk-Bińkowska A, Szmajda-Krygier D, Kozłowska E. The Microbiota–Gut–Brain Axis in Psychiatric Disorders. Int J Mol Sci. 2022;23(19):11245. DOI: 10.3390/ijms231911245. DOI: https://doi.org/10.3390/ijms231911245
Himmerich H, Patsalos O, Lichtblau N, Ibrahim M, Dalton B. Cytokine research in depression: principles, challenges, and open questions. Front Psychiatry. 2019;10:30. DOI: 10.3389/fpsyt.2019.00030. DOI: https://doi.org/10.3389/fpsyt.2019.00030
Fukui H. Increased intestinal permeability and decreased barrier function: does it really influence the risk of inflammation? Inflamm Intest Dis. 2016;1(3):135–45. DOI: 10.1159/000447252. DOI: https://doi.org/10.1159/000447252
Camilleri M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut. 2019;68(8):1516–26. DOI: 10.1136/gutjnl-2019-318427. DOI: https://doi.org/10.1136/gutjnl-2019-318427
Horn J, Mayer DE, Chen S, Mayer EA. Role of diet and its effects on the gut microbiome in the pathophysiology of mental disorders. Transl Psychiatry. 2022;12(1):164. DOI: 10.1038/s41398-022-01922-0. DOI: https://doi.org/10.1038/s41398-022-01922-0
Jones B, Daskalakis ZJ, Carvalho AF, Strawbridge R, Young AH, Mulsant BH, et al. Inflammation as a treatment target in mood disorders: review. BJPsych Open. 2020;6(3):e60. DOI: 10.1192/bjo.2020.43. DOI: https://doi.org/10.1192/bjo.2020.43
Sasso JM, Ammar RM, Tenchov R. Gut microbiome–brain alliance: a landscape view into mental and gastrointestinal health and disorders. ACS Chem Neurosci. 2023. DOI: 10.1021/acschemneuro.3c00127. DOI: https://doi.org/10.1021/acschemneuro.3c00127
Lach G, Schellekens H, Dinan TG, Cryan JF. Anxiety, depression, and the microbiome: a role for gut peptides. Neurotherapeutics. 2018;15(1):36–59. DOI: 10.1007/s13311-017-0585-0. DOI: https://doi.org/10.1007/s13311-017-0585-0
Cui L, Li S, Wang S, et al. Major depressive disorder: hypothesis, mechanism, prevention and treatment. Signal Transduct Target Ther. 2024;9:30. DOI: 10.1038/s41392-024-01738-y. DOI: https://doi.org/10.1038/s41392-024-01738-y
Shaw W. Dopamine excess and/or norepinephrine and epinephrine deficiency in autistic patients due to prenatal and/or postnatal deficiency of dopamine beta-hydroxylase. J Orthomol Med. 2021;36.