PROTECTIVE EFFECT OF WATER ENRICHED WITH MOLECULAR HYDROGEN IN EXPERIMENTAL COLORECTAL CANCER
DOI:
https://doi.org/10.11603/1811-2471.2024.v.i4.15052Keywords:
molecular hydrogen, oxidative stress, cGMP, colorectal cancerAbstract
SUMMARY. Oxidative processes play an important role in the pathogenesis of oncogenesis, e. g. colorectal cancer (CRC). There are also a number of reports on changes in the functioning of the cyclic nucleotide system in cancer patients, in particular, on the role of cGMP. The use of antioxidants can potentially slow down the tumor process. Given the antioxidant and anti-inflammatory properties of molecular hydrogen, it is relevant to study the potential therapeutic effect of hydrogen-enriched water in this oncopathology.
The aim – to assess the effect of water saturated with molecular hydrogen on the content of cGMP and malondialdehyde (MDA) in the blood serum of rats with CRC treated with 5-fluorouracil.
Material and Methods. Experiments were conducted on 90 male Wistar white rats. CRC was simulated in animals by subcutaneous injection of 1,2-dimethylhydrazine (1,2-DMG) at a dose of 7.2 mg/kg once a week for 30 weeks. Rats consumed water saturated with molecular hydrogen at a concentration of 0.6 ppm ad libitum. In blood serum the content of cGMP was measured by immunoassay method and the level of MDA was measured by the colorimetric method.
Results. The content of cGMP in the blood serum of rats with CRC was 39.9 % lower than in animals of the control group, while the level of MDA in the blood serum increased by 1.9 times. The content of cGMP in the blood serum of rats with CRC that consumed water enriched with molecular hydrogen was 38.1 % higher than in animals that consumed tap water, while the level of MDA significantly (by 30.8 %) decreased. Administration of 5-FU to animals with CRC led to a decrease in the content of cGMP in the blood serum by 42.3 % and an increase in MDA by 2.3 times compared to the control, but did not significantly differ from similar indicators in animals with CRC that were not treated with 5-FU. Serum cGMP levels in animals treated by 5-FU consuming hydrogen-enriched water were 24.1 % higher than in 5-FU-treated CRC rats that had access to tap water. Hydrogen water did not significantly affect the level of oxidative stress in 5-FU-treated CRC rats.
Conclusions. In rats with CRC induced by 1,2-DMG, the level of blood serum cGMP decreased and the content of MDA increased. Treatment of CRC-rats with 5-FU does not lead to significant changes in the intensity of oxidative stress and the cyclic nucleotide system. Consumption of water saturated with molecular hydrogen by animals with CRC leads to a significant improvement in the intensity of oxidative stress and the cyclic nucleotide system.
References
Onkologichna sluzhba Ukrayiny [Oncological Service of Ukraine]. (2024) Rak v Ukraini 2022-2023. Zakhvoriuvanist, smertnist, pokaznyky diialnosti onkolohichnoi sluzhby 2022-2023 [Cancer in Ukraine 2022-2023. Morbidity, mortality, performance indicators of the oncology service 2022-2023]. Biuleten natsionalnoho kantser-reiestru – Bulletin of the National Cancer register, 25. [in Ukrainain].
Jelic, M. D., Mandic, A. D., Maricic, S. M., & Srdjenovic, B. U. (2021). Oxidative stress and its role in cancer. Journal of cancer research and therapeutics, 17(1), 22-28. DOI: 10.4103/jcrt.JCRT_862_16. DOI: https://doi.org/10.4103/jcrt.JCRT_862_16
Stehle, D., Barresi, M., Schulz, J., & Feil, R. (2023). Heterogeneity of cGMP signalling in tumour cells and the tumour microenvironment: challenges and chances for cancer pharmacology and therapeutics. Pharmacology & Therapeutics, 242, 108337. DOI: https://doi.org/10.1016/j.pharmthera.2023.108337
Hofmann, F. (2020). The cGMP system: components and function. Biological chemistry, 401(4), 447-469. DOI: https://doi.org/10.1515/hsz-2019-0386
Di Iorio, P., Ronci, M., Giuliani, P., Caciagli, F., Ciccarelli, R., Caruso, V., ... & Zuccarini, M. (2021). Pros and cons of pharmacological manipulation of cGMP-PDEs in the prevention and treatment of breast cancer. International Journal of Molecular Sciences, 23(1), 262. DOI: https://doi.org/10.3390/ijms23010262
Windham, P. F., & Tinsley, H. N. (2015). cGMP signaling as a target for the prevention and treatment of breast cancer. Seminars in cancer biology, 31, 106-110. DOI: 10.1016/j.semcancer.2014.06.006. DOI: https://doi.org/10.1016/j.semcancer.2014.06.006
Yarla, N. S., Gali, H., Pathuri, G., Smriti, S., Farooqui, M., Panneerselvam, J., Kumar, G., Madka, V., & Rao, C. V. (2019). Targeting the paracrine hormone-dependent guanylate cyclase/cGMP/phosphodiesterases signaling pathway for colorectal cancer prevention. Seminars in cancer biology, 56, 168-174. DOI: 10.1016/j.semcancer. 2018.08.011 DOI: https://doi.org/10.1016/j.semcancer.2018.08.011
Samidurai, A., Xi, L., Das, A., & Kukreja, R. C. (2023). Beyond Erectile Dysfunction: cGMP-Specific Phosphodiesterase 5 Inhibitors for Other Clinical Disorders. Annual review of pharmacology and toxicology, 63, 585-615. DOI: 10.1146/annurev-pharmtox-040122-034745. DOI: https://doi.org/10.1146/annurev-pharmtox-040122-034745
Hussain, S. P., Hofseth, L. J., Harris C.C. (2003). Radical causes of cancer. Nature Reviews Cancer, 3(4), 276-285. DOI: https://doi.org/10.1038/nrc1046
Valko, M., Leibfritz, D., Moncol, J. Cronin, M.T., Mazur, M., Telser J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 39, 44-84. DOI: 10.1016/j.biocel. 2006.07.001 DOI: https://doi.org/10.1016/j.biocel.2006.07.001
Basak, D., Uddin, M. N., & Hancock, J. (2020). The Role of Oxidative Stress and Its Counteractive Utility in Colorectal Cancer (CRC). Cancers, 12(11), 3336. DOI: 10.3390/cancers12113336. DOI: https://doi.org/10.3390/cancers12113336
Schmitt, M., & Greten, F. R. (2021). The inflammatory pathogenesis of colorectal cancer. Nature reviews. Immunology, 21(10), 653-667. DOI: 10.1038/s41577-021-00534-x. DOI: https://doi.org/10.1038/s41577-021-00534-x
Ohta, S. (2015). Molecular hydrogen as a novel antioxidant: overview of the advantages of hydrogen for medical applications. Methods in enzymology, 555, 289-317. DOI: 10.1016/bs.mie.2014.11.038 DOI: https://doi.org/10.1016/bs.mie.2014.11.038
LeBaron, T. W., Kura, B., Kalocayova, B., Tribulova, N., & Slezak, J. (2019). A New Approach for the Prevention and Treatment of Cardiovascular Disorders. Molecular Hydrogen Significantly Reduces the Effects of Oxidative Stress. Molecules (Basel, Switzerland), 24(11), 2076, DOI: 10.3390/molecules24112076 DOI: https://doi.org/10.3390/molecules24112076
Lin, J., Chuang, C. C., & Zuo, L. (2017). Potential roles of microRNAs and ROS in colorectal cancer: diagnostic biomarkers and therapeutic targets. Oncotarget, 8(10), 17328-17346. DOI: 10.18632/oncotarget.14461 DOI: https://doi.org/10.18632/oncotarget.14461
Perše, M. (2013). Oxidative stress in the pathogenesis of colorectal cancer: cause or consequence? BioMed research international, 2013, 725710. DOI: 10.1155/ 2013/725710 DOI: https://doi.org/10.1155/2013/725710
Runtuwene, J., Amitani, H., Amitani, M., Asakawa, A., Cheng, K. C., & Inui, A. (2015). Hydrogen-water enhances 5-fluorouracil-induced inhibition of colon cancer. PeerJ, 3, e859. DOI: 10.7717/peerj.859 DOI: https://doi.org/10.7717/peerj.859
Kachur, O., Fira, L., Lykhatskyi, P., Fira, D., & Garlitska, N. (2022). Evaluation of membrane-destructive processes in rats with induced carcinogenesis of the colon using the cytostatic vincristine. Roczniki Panstwowego Zakladu Higieny, 73(2), 215-220. DOI: 10.32394/rpzh.2022.0212 DOI: https://doi.org/10.32394/rpzh.2022.0212
Kensara, O.A., El-Shemi, A. G., Mohamed, A. M., Refaat, B., Idris, S., Ahmad, J. (2016). Thymoquinone subdues tumor growth and potentiates the chemopreventive effect of 5-fluorouracil on the early stages of colorectal carcinogenesis in rats. Drug. Des. Devel. Ther., 11(10), 2239–2253. DOI: 10.2147/DDDT. S109721. DOI: https://doi.org/10.2147/DDDT.S109721
Council of Europe. (1986). European convention for the protection of vertebrate animals used for experimental and other scientific purposes. Strasbourg.
Tsikas, D. (2017). Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal Biochem, 524, 13-30. DOI: 10.1016/j.ab.2016.10.021. DOI: https://doi.org/10.1016/j.ab.2016.10.021
Okeh, U.M. (2009). Statistical problems in medical research. East African Journal of Public Health, 6(1), 1-7. DOI: https://doi.org/10.4314/eajph.v6i3.45762
Ohta, S. (2012). Molecular hydrogen is a novel antioxidant to efficiently reduce oxidative stress with potential for the improvement of mitochondrial diseases. Biochimica et Biophysica Acta, 1820(5), 586-94. DOI: https://doi.org/10.1016/j.bbagen.2011.05.006
Sim, M., Kim, C. S., Shon, W. J., Lee, Y. K., Choi, E. Y., & Shin, D. M. (2020). Hydrogen-rich water reduces inflammatory responses and prevents apoptosis of peripheral blood cells in healthy adults: a randomized, double-blind, controlled trial. Scientific reports, 10(1), 12130. DOI: 10. 1038/s41598-020-68930-2 DOI: https://doi.org/10.1038/s41598-020-68930-2
Rochette, L., Zeller, M., Cottin, Y., & Vergely, C. (2021). Antitumor Activity of Protons and Molecular Hydrogen: Underlying Mechanisms. Cancers, 13(4), 893. DOI: 10.3390/ cancers13040893
Chen, J., Mu, F., Lu, T., Du, D., & Xu, K. (2019). Brain Metastases Completely Disappear in Non-Small Cell Lung Cancer Using Hydrogen Gas Inhalation: A Case Report. OncoTargets and therapy, 12, 11145-11151. DOI: 10.2147/OTT.S235195). DOI: https://doi.org/10.2147/OTT.S235195
Rochette, L., Zeller, M., Cottin, Y., & Vergely, C. (2021). Antitumor Activity of Protons and Molecular Hydrogen: Underlying Mechanisms. Cancers, 13(4), 893. DOI: 10.3390/cancers13040893 DOI: https://doi.org/10.3390/cancers13040893
Akagi, J., Baba, H. (2019). Hydrogen gas restores exhausted CD8+ T cells in patients with advanced colorectal cancer to improve prognosis. Oncol Rep., 41(1), 301-311. DOI: 10.3892/or.2018.6841. DOI: https://doi.org/10.3892/or.2018.6841
Chen, J. B., Lu, Y. Y., & Xu, K. C. (2020). A narrative review of hydrogen oncology: from real world survey to real world evidence. Medical gas research, 10(3), 130-133. DOI: 10.4103/2045-9912.296044 DOI: https://doi.org/10.4103/2045-9912.296044
Chu, J., Gao, J., Wang, J., Li, L., Chen, G., Dang, J., Wang, Z., Jin, Z., & Liu, X. (2021). Mechanism of hydrogen on cervical cancer suppression revealed by high throughput RNA sequencing. Oncology reports, 46(1), 141. DOI: 10.3892/or.2021.8092 DOI: https://doi.org/10.3892/or.2021.8092
Kawai, D., Takaki, A., Nakatsuka, A., Wada, J., Tamaki, N., Yasunaka, T., Koike, K., Tsuzaki, R., Matsumoto, K., Miyake, Y., Shiraha, H., Morita, M., Makino, H., & Yamamoto, K. (2012). Hydrogen-rich water prevents progression of nonalcoholic steatohepatitis and accompanying hepatocarcinogenesis in mice. Hepatology (Baltimore, Md.), 56(3), 912-921. DOI: 10.1002/hep.25782 DOI: https://doi.org/10.1002/hep.25782
Wang, D., Wang, L., Zhang, Y., Zhao, Y., & Chen, G. (2018). Hydrogen gas inhibits lung cancer progression through targeting SMC3. Biomedicine & pharmacotherapy, 104, 788-797. DOI: 10.1016/j.biopha.2018.05.055 DOI: https://doi.org/10.1016/j.biopha.2018.05.055