BIOFEEDBACK SYSTEMS IN PATIENTS WITH AMPUTATION: A LITERATURE REVIEW

Authors

  • Yu. V. Zavidniuk Ivan Horbachevsky Ternopil National Medical University of the Ministry of Health of Ukraine
  • O. O. Shevchuk Ivan Horbachevsky Ternopil National Medical University of the Ministry of Health of Ukraine
  • I. R. Mysula Ivan Horbachevsky Ternopil National Medical University of the Ministry of Health of Ukraine
  • T. H. Bakaliuk Ivan Horbachevsky Ternopil National Medical University of the Ministry of Health of Ukraine
  • V. Yu. Zavidniuk Ivan Horbachevsky Ternopil National Medical University of the Ministry of Health of Ukraine

DOI:

https://doi.org/10.11603/1811-2471.2024.v.i4.15022

Keywords:

amputation, rehabilitation, biofeedback, prosthetics

Abstract

SUMMARY. Prosthesis users experience significant changes in biomechanical gait parameters depending on the level of amputation and, to a large extent, on the prosthesis components. Due to the active spread of computer technologies and methods of data collection and processing, biofeedback systems for improving gait retraining in prosthesis users have become much more accessible.

The aim – to review the current research on the use of biofeedback systems in patients after amputation and to identify promising methods for inclusion in routine physical therapy and rehabilitation strategies in general.

Visual and somatosensory feedback are considered critical for walking. Amputation disrupts motor and proprioceptive functions, forcing amputees to rely more on visual feedback to maintain balance and take steps. The feedback devices used in many studies have varied, including visual, auditory, haptic, and combined types, most of which have had at least some positive effect on gait parameters in participants with lower limb amputation.

Conclusions: The use of feedback technologies based on the activation and training of visual, auditory, and proprioceptive analyzers are modern and effective methods of rehabilitation of balance and gait disorders in patients after lower limb amputation. Particularly promising are developments that use vibrotactile feedback and combined systems that use several channels of sensory information, such as robotic systems and virtual reality. It has been proven that the use of rehabilitation techniques with a biofeedback system has a positive effect on balance and equilibrium parameters, provides confidence to the prosthesis user when walking in difficult conditions, reduces fear and risk of falling, and improves quality of life.

References

Abbas, R.L., Cooreman, D., Al Sultan, H., El Nayal, M., Saab, I. M., & El Khatib, A. (2021). The effect of adding virtual reality training on traditional exercise program on ba­lance and gait in unilateral, traumatic lower limb amputee. Games for health journal, 10(1), 50-56. DOI: https://doi.org/10.1089/g4h.2020.0028

Adamczyk, P.G., Kuo, A.D. (2015). Mechanisms of Gait Asymmetry Due to Push-off Deficiency in Unilateral Amputees. IEEE Trans. Neural Syst. Rehabil. Eng., 23, 776-785. DOI: https://doi.org/10.1109/TNSRE.2014.2356722

Afzal, M.R., Lee, H., Eizad, A., Lee, C.H., Oh, M.K., Yoon, J. (2019). Effects of Vibrotactile Biofeedback Coding Schemes on Gait Symmetry Training of Individuals with Stroke. IEEE Trans. Neural Syst. Rehabil. Eng., 27, 1617-1625. DOI: https://doi.org/10.1109/TNSRE.2019.2924682

Afzal, M.R., Oh, M.-K., Choi, H.Y., Yoon, J. (2016). A novel balance training system using multimodal biofeedback. Biomed. Eng. Online, 15, 42. DOI: https://doi.org/10.1186/s12938-016-0160-7

Alahakone, A.U., Senanayake, S.M.N.A. Vibrotactile feedback systems: Current trends in rehabilitation, sports and information display. In Proceedings of the 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore, 14–17 July 2009, pp. 1148-1153. DOI: https://doi.org/10.1109/AIM.2009.5229741

Ambron, E., Buxbaum, L.J., Miller, A., Stoll, H., Kuchenbecker, K.J., & Coslett, H.B. (2021). Virtual reality treatment displaying the missing leg improves phantom limb pain: a small clinical trial. Neurorehabilitation and neural repair, 35(12), 1100-1111. DOI: https://doi.org/10.1177/15459683211054164

An, W.W., Ting, K.-H., Au, I.P., Zhang, J.H., Chan, Z.Y.S., Davis, I.S., So, W.K.Y., Chan, R.H.M., Cheung, R.T.H. (2019). Neurophysiological Correlates of Gait Retraining with Real-Time Visual and Auditory Feedback. IEEE Trans. Neural Syst. Rehabil. Eng., 27, 1341-1349. DOI: https://doi.org/10.1109/TNSRE.2019.2914187

Andrysek, J., Michelini, A., Eshraghi, A., Kheng, S., Heang, T., and Thor, P. (2022). Gait Performance of Friction-Based Prosthetic Knee Joint Swing-Phase Controllers in Under-Resourced Settings. Prosthesis, 4(1), 125-135, DOI: 10.3390/prosthesis4010013. DOI: https://doi.org/10.3390/prosthesis4010013

Bernhart, S., Kranzinger, S., Berger, A., Peternell, G. (2022). Ground Contact Time Estimating Wearable Sensor to Measure Spatio-Temporal Aspects of Gait. Sensors, 22(9), 3132. DOI: https://doi.org/10.3390/s22093132

Bevilacqua, R., Maranesi, E., Di Rosa, M., Luzi, R., Casoni, E., Rinaldi, N., ... & Riccardi, G. R. (2020). Rehabilitation of older people with Parkinson’s disease: An innovative protocol for RCT study to evaluate the potential of robotic-based technologies. BMC neurology, 20, 1-8. DOI: https://doi.org/10.1186/s12883-020-01759-4

Bowman, T., Gervasoni, E., Arienti, C., Lazzerini, S.G., Negrini, S., Crea, S., Cattaneo, D., Carrozza, M.C. (2021). Wearable Devices for Biofeedback Rehabilitation: A Systematic Review and Meta-Analysis to Design Application Rules and Estimate the Effectiveness on Balance and Gait Outcomes in Neurological Diseases. Sensors, 21, 3444. DOI: https://doi.org/10.3390/s21103444

Brandt, A., Riddick, W., Stallrich, J.W., Lewek, M., Huang, H. (Helen) (2019). Effects of extended powered knee prosthesis stance time via visual feedback on gait symmetry of individuals with unilateral amputation: A preliminary study. J. Neuroeng. Rehabil., 16, 112. DOI: https://doi.org/10.1186/s12984-019-0583-z

Cabral, S. (2017). Gait Symmetry Measures and their Relevance to Gait Retraining. Handbook of Human Motion, Cham: Springer International Publishing. pp. 1-19. DOI: 10.1007/978-3-319-30808-1_201-1. DOI: https://doi.org/10.1007/978-3-319-30808-1_201-1

Crea, S., Cipriani, C., Donati, M., Carrozza, M.C., Vitiello, N. (2015). Providing time-discrete gait information by wearable feedback apparatus for lower-limb amputees: Usability and functional validation. IEEE Trans. Neural. Syst. Rehabil. Eng., 23, 250-257. DOI: https://doi.org/10.1109/TNSRE.2014.2365548

Crosby, L.D., Chen, J.L., Grahn, J.A., Patterson, K.K. (2022). The Effect of Rhythm Abilities on Metronome-Cued Walking with an Induced Temporal Gait Asymmetry in Neurotypical Adults. J. Mot. Behav., 54, 267-280. DOI: https://doi.org/10.1080/00222895.2021.1953959

Danilov, Y.P. (2017). Translingual Neurostimulation (TLNS): A novel approach to neurorehabilitation. J. Neurol. Neurophysiol., 08. DOI: https://doi.org/10.4172/2155-9562-C1-057

Dietrich, C., Nehrdich, S., Seifert, S., Blume, K.R., Miltner, W.H.R., Hofmann, G.O., & Weiss, T. (2018). Leg prosthesis with somatosensory feedback reduces phantom limb pain and increases functionality. Front Neurol., 9, 270. DOI: https://doi.org/10.3389/fneur.2018.00270

Escamilla-Nunez, R., Michelini, A., Andrysek, J. A Wearable Vibrotactile Biofeedback System Targeting Gait Symmetry of Lower-limb Prosthetic Users. In Proceedings of the 2020 42nd Annual International Confe­rence of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020, pp. 3281-3284. DOI: https://doi.org/10.1109/EMBC44109.2020.9176666

Esposito, E.R., Choi, H.S., Darter, B.J., Wilken, J. (2017). Can real-time visual feedback during gait retraining reduce metabolic demand for individuals with transtibial amputation? PLoS ONE., 12, e0171786. DOI: https://doi.org/10.1371/journal.pone.0171786

Farion-Navolska, O.V. (2023). Rehabilitation of patients with cervical and lumbar spine instability using tymo robotic stabilometrical platform. Aktual'ni problemy suchasnoyi medytsyny: Visnyk Ukrayins'koyi medychnoyi stomatolohichnoyi akademiyi – Actual problems of modern medicine: Bulletin of the Ukrainian Medical Stomatological Academy, 23(3), 58-62 [in Ukrainian]. DOI: https://doi.org/10.31718/2077-1096.23.3.58

Flor, H. (2002). The modification of cortical reorganization and chronic pain by sensory feedback. Applied psychophysiology and biofeedback, 27, 215-227. DOI: https://doi.org/10.1023/A:1016204029162

Gailey, R. (2008). Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use. J. Rehabil. Res. Dev., 45, 15-30. DOI: https://doi.org/10.1682/JRRD.2006.11.0147

Gaunaurd, I., Gailey, R., Springer, B., Symsack, A., Clemens, S., Lucarevic, J., Kristal, A., Bennett, C., Isaacson, B., Agrawal, V., et al. (2020). The Effectiveness of the DoD/VA Mobile Device Outcomes-Based Rehabilitation Program for High Functioning Service Members and Vete­rans with Lower Limb Amputation. Mil. Med., 185, 480-489. DOI: https://doi.org/10.1093/milmed/usz201

Giggins, O.M., Persson, U.M., Caulfield, B. (2013). Biofeedback in rehabilitation. J. Neuroeng. Rehabil., 10, 60. DOI: https://doi.org/10.1186/1743-0003-10-60

Hao, J., Chen, Z., Remis, A., & He, Z. (2023). Virtual Reality–Based Rehabilitation to Restore Motor Function in People With Amputation: A Systematic Literature Review. American journal of physical medicine & rehabilitation, 102(5), 468-474. DOI: https://doi.org/10.1097/PHM.0000000000002150

Highsmith, M.J., Andrews, C.R., Millman, C., Fuller, A., Kahle, J.T., Klenow, T.D., Lewis, K.L., Bradley, R.C., Orriola, J.J. (2016). Gait Training Interventions for Lower Extremity Amputees: A Systematic Literature Review. Technol. Innov., 18, 99-113. DOI: https://doi.org/10.21300/18.2-3.2016.99

Hill, A. (1999). Phantom limb pain: A review of the literature on attributes and potential mechanisms. J. Pain Symptom Manag., 17, 125-142. DOI: https://doi.org/10.1016/S0885-3924(98)00136-5

Ma, C.Z.-H., Wong, D.W.-C., Lam, W.-K., Wan, A.H.-P., Lee, C.C.W. (2016). Balance Improvement Effects of Biofeedback Systems with State-of-the-Art Wearable Sensors: A Systematic Review. Sensors, 16, 434. DOI: https://doi.org/10.3390/s16040434

Maranesi, E., Casoni, E., Baldoni, R., Barboni, I., Rinaldi, N., Tramontana, B., ... & Bevilacqua, R. (2022). The effect of non-immersive virtual reality exergames versus traditional physiotherapy in Parkinson’s disease older patients: preliminary results from a randomized-controlled trial. International journal of environmental research and public health, 19(22), 14818. DOI: https://doi.org/10.3390/ijerph192214818

Maranesi, E., Di Donna, V., Pelliccioni, G., Came­riere, V., Casoni, E., Baldoni, R., ... & Bevilacqua, R. (2022). Acceptability and Preliminary Results of Technology-Assisted Balance Training in Parkinson’s Disease. Interna­tional journal of environmental research and public health, 19(5), 2655. DOI: https://doi.org/10.3390/ijerph19052655

Martini, E., Cesini, I., D’Abbraccio, J., Arnetoli, G., Doronzio, S., Giffone, A., Meoni, B., Oddo, C.M., Vitiello, N., Crea, S. (2021). Increased Symmetry of Lower-Limb Amputees Walking with Concurrent Bilateral Vibrotactile Feedback. IEEE Trans. Neural Syst. Rehabil. Eng., 29, 74-84. DOI: https://doi.org/10.1109/TNSRE.2020.3034521

Meyer, S., Limet, J., Stevens, P., & Michielsen, M. (2024). CERITER Clinical study-Stride One. MedRxiv., 09. DOI: https://doi.org/10.1101/2024.09.04.24312478

Michelini, A., Sivasambu, H., Andrysek, J. (2022). The Short-Term Effects of Rhythmic Vibrotactile and Auditory Biofeedback on the Gait of Individuals After Weight-Induced Asymmetry. Can. Prosthet. Orthot. J., 5. DOI: https://doi.org/10.33137/cpoj.v5i1.36223

Miller, C.A., Hayes, D.M., Dye, K., Johnson, C., Meyers, J. (2012). Using the Nintendo Wii Fit and Body Weight Support to Improve Aerobic Capacity, Balance, Gait Ability, and Fear of Falling. J. Geriatr. Phys. Ther., 35, 95-104. DOI: https://doi.org/10.1519/JPT.0b013e318224aa38

Moggio, L., De Sire, A., Marotta, N., Demeco, A., Ammendolia, A. (2021). Vibration therapy role in neurological diseases rehabilitation: An umbrella review of systematic reviews. Disabil. Rehabil., 1-9. DOI: https://doi.org/10.1080/09638288.2021.1946175

Peters, D.M., O’Brien, E.S., Kamrud, K.E., Ro­berts, S.M., Rooney, T.A., Thibodeau, K.P., Balakrishnan, S., Gell, N., Mohapatra, S. (2021). Utilization of Wearable Technology to Assess Gait and Mobility Post-Stroke: A Systematic Review. J. Neuroeng. Rehabil., 18, 67. DOI: https://doi.org/10.1186/s12984-021-00863-x

Pin, T.W., & Butler, P.B. (2019). The effect of interactive computer play on balance and functional abilities in children with moderate cerebral palsy: a pilot randomized study. Clinical rehabilitation, 33(4), 704-710. DOI: https://doi.org/10.1177/0269215518821714

Pinheiro, C., Lopes, J.M., Figueiredo, J., Goncalves, L.M., Santos, C.P. Design and Technical Validation of a Wearable Biofeedback System for Robotic Gait Rehabilitation. In Proceedings of the 2020 IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2020, Ponta Delgada, Portugal, 15–17 April 2020, pp. 16-21. DOI: https://doi.org/10.1109/ICARSC49921.2020.9096105

Plauche, A., Villarreal, D., Gregg, R. (2016). A Haptic Feedback System for Phase-Based Sensory Restoration in Above-Knee Prosthetic Leg Users. IEEE Trans. Haptics, 9, 421-426. DOI: https://doi.org/10.1109/TOH.2016.2580507

Roerdink, M., Lamoth, C.J.C., Kwakkel, G., Van Wie­ringen, P.C.W., Beek, P.J. (2007). Gait Coordination after Stroke: Benefits of Acoustically Paced Treadmill Walking. Phys. Ther., 87, 1009-1022. DOI: https://doi.org/10.2522/ptj.20050394

Rognini, G., Petrini, F.M., Raspopovic, S., Valle, G., Granata, G., Strauss, I., Solcà, M., Bello-Ruiz, J., Herbelin, B., Mange, R., et al. (2019). Multisensory bionic limb to achieve prosthesis embodiment and reduce distorted phantom limb perceptions. J. Neurol. Neurosurg. Psychiatry, 90, 833-836. DOI: https://doi.org/10.1136/jnnp-2018-318570

Rusaw, D.F., Hagberg, K., Nolan, L., Ramstrand, N. (2012). Can vibratory feedback be used to improve post­ural stability in persons with transtibial limb loss? J. Rehabil. Res. Dev., 49, 1239. DOI: https://doi.org/10.1682/JRRD.2011.05.0088

Rutledge, T., Velez, D., Depp, C., McQuaid, J. R., Wong, G., Jones III, R. C. W., ... & Giap, H. (2019). A virtual reality intervention for the treatment of phantom limb pain: development and feasibility results. Pain Medicine, 20(10), 2051-2059. DOI: https://doi.org/10.1093/pm/pnz121

Sagawa Y., Turcot K., Armand S., Thevenon A., Vuillerme N., and Watelain E., (2011). Biomechanics and physiological parameters during gait in lower-limb amputees: A systematic review. Gait Posture, 33(4), 511-526, DOI: 10.1016/j.gaitpost.2011.02.003. DOI: https://doi.org/10.1016/j.gaitpost.2011.02.003

Shull, P.B., Damian, D.D. (2015). Haptic wearables as sensory replacement, sensory augmentation and trainer – a review. J. Neuroeng. Rehabil., 12, 59. DOI: https://doi.org/10.1186/s12984-015-0055-z

Sigrist, R., Rauter, G., Riener, R., Wolf, P. (2012). Augmented visual, auditory, haptic, and multimodal feedback in motor learning: A review. Psychon. Bull. Rev., 20, 21-53. DOI: https://doi.org/10.3758/s13423-012-0333-8

Staiano, A.E., Flynn, R. (2014). Therapeutic Uses of Active Videogames: A Systematic Review. Games Heal. J., 3, 351-365. DOI: https://doi.org/10.1089/g4h.2013.0100

Steckel, B. M., Schwertner, R., Bücker, J., Nazareth, A. C. D. P., Bizarro, L., & Oliveira, A. A. D. (2024). Immersive virtual reality applied to the rehabilitation of patients with lower limb amputation: a small randomized controlled trial for feasibility study. Virtual Reality, 28(2), 1-15. DOI: https://doi.org/10.1007/s10055-024-01015-x

Stefan, S., Askew, C.D., Abel, T., Strüder, H.K. (2010). Exercise, Music, and the Brain: Is There a Central Pattern Generator? J. Sports Sci., 28, 1337-1343. DOI: https://doi.org/10.1080/02640414.2010.507252

Ülger, Ö., Sahan, T.Y., Çelik, S.E. (2018). A syste­matic literature review of physiotherapy and rehabilitation approaches to lower-limb amputation. Physiother. Theory Pract., 34, 821-834. DOI: https://doi.org/10.1080/09593985.2018.1425938

Wong, C.K., Vandervort, E.E., Moran, K.M., Adler, C.M., Chihuri, S.T., Youdan, G.A. (2022). Walking Asymmetry and Its Relation to Patient-Reported and Performance-Based Outcome Measures in Individuals with Unilateral Lower Limb Loss. Int. Biomech., 9, 33-41 DOI: https://doi.org/10.1080/23335432.2022.2142160

Yang, L., Dyer, P., Carson, R., Webster, J., Foreman, K.B., Bamberg, S. (2012). Utilization of a lower extre­mity ambulatory feedback system to reduce gait asymmetry in transtibial amputation gait. Gait Posture, 36, 631-634. DOI: https://doi.org/10.1016/j.gaitpost.2012.04.004

Published

2024-12-23

How to Cite

Zavidniuk, Y. V., Shevchuk, O. O., Mysula, I. R., Bakaliuk, T. H., & Zavidniuk, V. Y. (2024). BIOFEEDBACK SYSTEMS IN PATIENTS WITH AMPUTATION: A LITERATURE REVIEW. Achievements of Clinical and Experimental Medicine, (4), 25–31. https://doi.org/10.11603/1811-2471.2024.v.i4.15022

Issue

Section

Огляд літератури