THE ROLE OF SARS-CОV-2 IN THE DEVELOPMENT OF SENSORINEURAL HEARING LOSS

Authors

  • O. V. Bakalets Ivan Horbachevsky Ternopil National Medical University of the Ministry of Health of Ukraine
  • L. Ya. Fedoniuk Ivan Horbachevsky Ternopil National Medical University of the Ministry of Health of Ukraine

DOI:

https://doi.org/10.11603/1811-2471.2024.v.i4.15019

Keywords:

sensorineural hearing loss, COVID, coronavirus

Abstract

SUMMARY. The SARS-CoV-2 virus causes the development of not only respiratory and heart failure. This multi-organ infection is accompanied by symptoms of damage to the sensory systems, including the auditory system.

The aim – to study frequency, the main pathogenesis mechanisms and prognosis of coronavirus-induced sensorineural hearing loss.

Material and Methods. The study has analyzed mostly English language scientific publications with mostly high citation index. An information search was carried out on the MEDLINE/PubMed and Index Medicus platforms for the last ten years.

Results. It has been established that hair cells in the inner ear contain angiotensin-converting enzyme type 2 receptors on their membranes to which the S-protein trimmer of the SARS CoV-2 virus can attach. With the participation of two more cellular proteases, direct viral damage and development of viral-induced cochlear sensorineural hearing loss in COVID is initiated. Viral neuroinvasion of the auditory analyzer neurons probably occurs via axonal retrograde transport along the fibers of the olfactory and vagus nerves, lymphogenous or hematogenous. Secondly, a cascade of indirect damaging factors (synthesis of cytokines, autoimmune reaction, temporary or permanent ischemia, blood clotting disorder and others) aggravates pathological changes in virtually all cells of the auditory pathway. The role of post-vaccination complications also cannot be ruled out.

Conclusions. The heterogeneity of the pathophysiology of SARS-CoV-2-induced audiological changes requires further research to better understand the causes for patients and clinicians, мechanisms and methods for diagnosing persistent and transient hearing loss during and after COVID for effective disease prevention and treatment of each individual patient.

References

Kaul, R. & Devi, S. (2022). Coronavirus – A Crippling Affliction to Humans. Recent Pat Biotechnol., 16(3), 226-242. DOI: 10.2174/1872208316666220404103033 DOI: https://doi.org/10.2174/1872208316666220404103033

Pierce, J.D., Shen, Q., Cintron, S.A. & Hiebert, J.B. (2022). Post-COVID-19 Syndrome. Nurs Res., 71(2), 164-174. DOI: 10.1097/NNR.0000000000000565 DOI: https://doi.org/10.1097/NNR.0000000000000565

WHO Director-General's opening remarks at the media briefing – 5 May 2023 (2023) Retrieved from : https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-5-may-2023 (accessed on 2 October 2024)

WHO COVID-19 dashboard (n.d.). Retrieved from: https://data.who.int/dashboards/covid19/cases?n=c(accessed on 2 October 2024)

COVID-19 Epidemiological Update – 9 October 2024 Retrieved from: / https://www.who.int/publications/m/item/covid-19-epidemiological-update-edition-172 (accessed on 2 October 2024)

Sahin, A.R., Erdogan, A., Agaoglu, P.M., Dineri, Y., Cakirci, A.Y. &.Senel, M.E et al. (2020) 2019 novel coronavirus (COVID-19) outbreak: a review of the current literature. Eur J Med Oncol., 4(1), 1-7 DOI: 10.14744/ejmo.2020.12220 DOI: https://doi.org/10.14744/ejmo.2020.12220

Brann, D.H., Tsukahara, T., Weinreb, C., Lipovsek, M., Van den Berge, K. & Gong, B. et al. (2020) Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv., 6(31), eabc5801. DOI: 10.1126/sciadv.abc5801 DOI: https://doi.org/10.1126/sciadv.abc5801

Gautier, J.F & Ravussin, Y. (2020). A new symptom of COVID-19: loss of taste and smell. Obesity (Silver Spring), 5, 848. DOI: 10.1002/oby.22809 DOI: https://doi.org/10.1002/oby.22809

Deafness and hearing loss. (2024). Retrieved from: https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss (accessed on 2 February 2024)

Saniasiaya, J. (2021.) Hearing Loss in SARS-CoV-2: What Do We Know? Ear Nose Throat J., 100(2_suppl), 152S-154S. DOI: 10.1177/0145561320946902 DOI: https://doi.org/10.1177/0145561320946902

Shi, X., Liu, X., & Sun, Y. (2023). The Pathogenesis of Cytomegalovirus and Other Viruses Associated with Hearing Loss: Recent Updates. Viruses, 15(6), 1385. DOI: 10.3390/v15061385 DOI: https://doi.org/10.3390/v15061385

Wu, Y., Xu, X., Chen, Z., Duan, J., Hashimoto, K., Yang, L., Liu, C. & Yang, C. (2020). Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun, 87, 18-22. DOI: 10.1016/j.bbi.2020.03.031 DOI: https://doi.org/10.1016/j.bbi.2020.03.031

Jeong, M., Ocwieja, K.E., Han, D., Wackym, P.A., Zhang, Y., Brown, A., Moncada, C., Vambutas, A., Kanne, T. & Crain, R., et al. (2021). Direct SARS-CoV-2 infection of the human inner ear may underlie COVID-19-associated audiovestibular dysfunction. Commun. Med., 1, 44. DOI: 10.1038/s43856-021-00044-w DOI: https://doi.org/10.1038/s43856-021-00044-w

Sriwijitalai, W. & Wjwanitkit, V. (2020). Hearing loss and COVID-19: A note. Am J Otolaryngol, 2, 102473. DOI:10.1016/j.amjoto.2020.102473 DOI: https://doi.org/10.1016/j.amjoto.2020.102473

Ong, K.M.C., & Cruz, T.L.G. (2022). Otologic and vestibular symptoms in COVID-19: A scoping review. World J Otorhinolaryngol Head Neck Surg, 8(4), 287-96. DOI: 10.1002/wjo2.57 DOI: https://doi.org/10.1002/wjo2.57

Chandrasekhar, S.S., Tsai Do, B.S., Schwartz, S.R., Bontempon, L.J., Faucett, E.A., Finestone, S.A., Hollingsworth, D.B., Kelley, D.M., Kmucha, S.T., & Satterfield, L., et al. (2019). Clinical Practice Guideline: Sudden Hearing Loss (Update). Otolaryngol. Head Neck Surg., 161 (Suppl. S1), S1-S45. DOI: https://doi.org/10.1177/0194599819859885

Wichova, H., Miller, M.E. & Derebery, M.J. (2021) Otologic Manifestations After COVID-19 Vaccination: The House Ear Clinic Experience. Otol. Neurotol, 42, e1213-e1218. DOI: https://doi.org/10.1097/MAO.0000000000003275

Jeong, J. & Choi, H.S. (2021). Sudden sensorineural hearing loss after COVID-19 vaccination. Int J Infect Dis, 113, 341-343. DOI: 10.1016/j.ijid.2021.10.025. Epub 2021 Oct 17 DOI: https://doi.org/10.1016/j.ijid.2021.10.025

Zoccali, F., Cambria, F., Colizza, A., Ralli, M., Greco, A., de Vincentiis, M., Petrella, C., Fiore, M., Minni, A. & Barbato, C. (2022). Sudden Sensorineural Hearing Loss after Third Dose Booster of COVID-19 Vaccine Administration. Diagnostics (Basel), 12(9), 2039. DOI: 10.3390/diagnostics12092039 DOI: https://doi.org/10.3390/diagnostics12092039

Liew, X.W., Tang, Z.H.M., Ong, Y.Q.C., & See, K.C. (2023). Hearing Loss after COVID-19 and Non-COVID-19 Vaccination: A Systematic Review. Vaccines (Basel),11(12), 1834. DOI: 10.3390/vaccines11121834 DOI: https://doi.org/10.3390/vaccines11121834

Formeister, E.J., Chien, W., Agrawal, Y., Carey, J.P., Stewart, C.M. & Sun, D.Q. (2021). Preliminary Analysis of Association Between COVID-19 Vaccination and Sudden Hearing Loss Using US Centers for Disease Control and Prevention Vaccine Adverse Events Reporting System Data. JAMA Otolaryngol Head Neck Surg, 147(7), 674-676. DOI: 10.1001/jamaoto.2021.0869 DOI: https://doi.org/10.1001/jamaoto.2021.0869

O'Mahoney, L.L., Routen, A., Gillies, C., Ekezie, W., Welford, A., & Zhang, A., et al. (2022). The prevalence and long-term health effects of Long Covid among hospitalised and non-hospitalised populations: a systematic review and meta-analysis. EClinicalMedicine, 55, 101762. DOI: 10.1016/j.eclinm.2022.101762 DOI: https://doi.org/10.1016/j.eclinm.2022.101762

Bakalets, O., Dzyha, S. & Behosh, N. (2023) Functional diagnostics of the respiratory system in patients with Long COVID. Bulletin of Medical and Biological Research, 2(16), 60-66. DOI: https://doi.org/10.61751/bmbr.2706-6290.2023.2.60

Lin, X., Sha, Z., Trimpert, J., Kunec, D., Jiang, C., Xiong, Y., Xu, B., Zhu, Z., Xue, W., & Wu, H. (2023). The NSP4 T492I mutation increases SARS-CoV-2 infectivity by altering non-structural protein cleavage. Cell Host Microbe, 31(7), 1170-1184.e7. DOI: 10.1016/j.chom.2023.06.002. DOI: https://doi.org/10.1016/j.chom.2023.06.002

Meng, B., Abdullahi, A., Ferreira, I., Goonawardane, N., Saito, A., & Kimura, I., et al. (2022). Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature. 603(7902), 706-714. DOI: 10.1038/s41586-022-04474-x DOI: https://doi.org/10.1038/s41586-022-04474-x

Lennerstrand, J., Svensson, L., & Lundkvist, A. (2022) How did Omicron evolve and why does this SARS-CoV-2 variant spread so fast? Lakartidningen, 119, 21242

Conde Cardona, G., Quintana Pájaro, L.D., Quintero Marzola, I.D., Ramos, Villegas Y., & Moscote Salazar, L.R. (2020). Neurotropism of SARS-CoV 2: Mechanisms and manifestations. Neurol Sci, 412, 116824. DOI: 10.1016/j.jns. 2020.116824. Epub 2020 Apr 8. DOI: https://doi.org/10.1016/j.jns.2020.116824

Maliha, S.T., Fatemi, R., & Araf, Y. (2024) COVID-19 and the brain: understanding the pathogenesis and consequences of neurological damage. Molecular Biology Reports, 51(1), 318. DOI: 10.1007/s11033-024-09279-x. DOI: https://doi.org/10.1007/s11033-024-09279-x

Fancello, V., Fancello, G., Hatzopoulos, S., Bianchini, C., Stomeo, F., Pelucchi, S.. & Ciorba, A. (2022). Sensorineural Hearing Loss Post-COVID-19 Infection: An Update. Audiol Res, 12(3), 307-315. DOI: 10.3390/audiolres12030032 DOI: https://doi.org/10.3390/audiolres12030032

Mustafa, M.W.M. (2020.) Audiological profile of asymptomatic COVID-19 PCR-positive cases. Am J Otolaryngol, 41(3), 102483. DOI: 10.1016/j.amjoto.2020.102483 DOI: https://doi.org/10.1016/j.amjoto.2020.102483

Magro, C.M., Mulvey, J., Kubiak, J., Mikhail, S., Suster, D., Crowson, A.N., Laurence, J. & Nuovo, G. (2020). Severe COVID-19: A multifaceted viral vasculopathy syndrome. Ann. Diagn. Pathol, 50, 151645. DOI: 10.1016/j.anndiagpath.2020.151645 DOI: https://doi.org/10.1016/j.anndiagpath.2020.151645

Uranaka, T., Kashio, A., Ueha, R., Sato, T., Bing, H., & Ying, G., et al. (2021). Expression of ACE2, TMPRSS2, and Furin in Mouse Ear Tissue, and the Implications for SARS-CoV-2 Infection. Laryngoscope, 131(6), E2013-E2017. DOI: 10.1002/lary.29324 DOI: https://doi.org/10.1002/lary.29324

Jiang, X., Li, D., Maghsoudloo, M., Zhang, X., Ma, W., & Fu, J. (2024) Targeting furin, a cellular proprotein convertase, for COVID-19 prevention and therapeutics. Drug Discov Today, 29(7), 104026. DOI: 10.1016/j.drudis.2024.104026 DOI: https://doi.org/10.1016/j.drudis.2024.104026

Ozer, F., & Alkan, O. (2023) Simultaneous Sudden Hearing Loss and Peripheral Facial Paralysis in a Patient with COVID-19. Ear Nose Throat., 102(11), NP559-NP564. DOI: 10.1177/01455613211028094. DOI: https://doi.org/10.1177/01455613211028094

Young, A., & Ng, M. (2023). Otoacoustic Emissions Apr 17. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–. Retrieved from : https://www.ncbi.nlm.nih.gov/books/NBK580483/

Eggermont, J.J. (2019). Cochlea and auditory nerve. Handb Clin Neurol, 160, 437-449. DOI: 10.1016/B978-0-444-64032-1.00029-1 DOI: https://doi.org/10.1016/B978-0-444-64032-1.00029-1

Salvi, R., Sun, W., Ding, D., Chen, G.D., Lobarinas, E., Wang, J., Radziwon, K. & Auerbach, B.D. (2017). Inner Hair Cell Loss Disrupts Hearing and Cochlear Function Leading to Sensory Deprivation and Enhanced Central Auditory Gain. Front Neurosci., 10, 621. DOI: 10.3389/fnins. 2016.00621 DOI: https://doi.org/10.3389/fnins.2016.00621

Frazier, K.M., Hooper, J.E., Mostafa, H.H. & Stewart, C.M. (2020). SARS-CoV-2 Virus Isolated From the Mastoid and Middle Ear: Implications for COVID-19 Precautions During Ear Surgery. JAMA Otolaryngol Head Neck Surg, 146(10), 964-966. DOI: 10.1001/jamaoto.2020.1922 DOI: https://doi.org/10.1001/jamaoto.2020.1922

Russo, A., Tellone, E., Barreca, D., Ficarra, S. & Laganà, G. (2022). Implication of COVID-19 on Erythrocytes Functionality: Red Blood Cell Biochemical Implications and Morpho-Functional Aspects. Int J Mol Sci., 23(4), 2171. DOI: 10.3390/ijms23042171 DOI: https://doi.org/10.3390/ijms23042171

Reynolds, J.L. & Mahajan, S.D. (2021). SARS-COV2 alters blood brain barrier integrity contributing to neuro-inflammation. J Neuroimmune Pharmacol, 16(1), 4-6. DOI: 10.1007/s11481-020-09975-y DOI: https://doi.org/10.1007/s11481-020-09975-y

Butowt, R. & von Bartheld, C.S. (2021). Anosmia in COVID-19: Underlying Mechanisms and Assessment of an Olfactory Route to Brain. Infection Neuroscientist, 27(6), 582-603. DOI: 10.1177/1073858420956905 DOI: https://doi.org/10.1177/1073858420956905

Jacob, J., Flannery, W. & Mostert, C. (2020). Novel ENT triad of anosmia, ageusia and hearing impairment in COVID-19. Intern Med J., 50(9), 1155. DOI: 10.1111/imj.14880 DOI: https://doi.org/10.1111/imj.14880

Chen, X., Fu, Y.Y., & Zhang, T.Y. (2019) Role of viral infection in sudden hearing loss. J Int Med Res., 47(7), 2865-2872. DOI: 10.1177/0300060519847860 DOI: https://doi.org/10.1177/0300060519847860

Chern, A., Famuyide, A.O., Moonis, G. & Lalwani, A.K. (2021). Bilateral Sudden Sensorineural Hearing Loss and Intralabyrinthine Hemorrhage in a Patient With COVID-19. Otol Neurotol., 42(1), e10-e14. DOI: 10.1097/MAO. 0000000000002860 DOI: https://doi.org/10.1097/MAO.0000000000002860

Corazzi, V., Migliorelli, A., Bianchini, C., Pelucchi, S., & Ciorba, A. (2023). Hearing Loss and Blood Coagulation Disorders: A Review. Hematol Rep., 15(3), 421-431. DOI: 10.3390/hematolrep15030043 DOI: https://doi.org/10.3390/hematolrep15030043

Knight, R., Walker, V., Ip, S., Cooper, J.A., Bolton, T. & Keene, S et al. (2022). Association of COVID-19 with major arterial and venous thrombotic diseases: a population-wide cohort study of 48 million adults in England and Wales. Circulation., 146(12), 892-906. DOI: 10.1161/CIRCULATIONAHA.122.060785. DOI: https://doi.org/10.1161/CIRCULATIONAHA.122.060785

Moldobaeva, A., van Rooijen, N., & Wagner, E.M. (2011). Effects of ischemia on lung macrophages. PLoS One, 6(11), e26716. DOI: 10.1371/journal.pone.0026716. DOI: https://doi.org/10.1371/journal.pone.0026716

Hanff, T.C., Mohareb, A.M., Giri, J., Cohen, J.B. & Chirinos, J.A. (2020). Thrombosis in COVID-19. Am J Hematol., 95(12), 578-1589. DOI: 10.1002/ajh.25982 DOI: https://doi.org/10.1002/ajh.25982

De Luca, P., Scarpa, A., Ralli, M., Tassone, D., Simone, M., De Campora, L., Cassandro, C. & Di Stadio, A. (2023). Corrigendum: Auditory disturbances and SARS-CoV-2 infection: brain inflammation or cochlear affection? Systematic review and discussion of potential pathogenesis. Front Neurol., 14, 1234744. DOI: 10.3389/fneur.2023.1234744 DOI: https://doi.org/10.3389/fneur.2023.1234744

Canales Medina, M. & Ramirez Gómez, M. (2022) Tinnitus, Sudden Sensorineural Hearing Loss, and Vestibular Neuritis As Complications of the Astra Zeneca COVID-19 Vaccine. Cureus., 14(1), e20906. DOI: 10.7759/cureus.20906. DOI: https://doi.org/10.7759/cureus.20906

Interim Recommendations for Use of the ChAdOx1-S [Recombinant] Vaccine against COVID-19 (AstraZeneca COVID-19 Vaccine AZD1222 Vaxzevria™, SII COVISHIELD™). (15 March 2022). Retrieved from : https://www.who.int/publications/i/item/WHO-2019-nCoV-vaccines-SAGE_recommendation-AZD1222-2021.1 (accessed on 10 July 2024)

Zhang, Y., Bissola, A.L., Treverton, J., Hack, M., Lychacz, M., Kwok, S., Arnold, A. & Nazy, I. (2024). Vaccine-Induced Immune Thrombotic Thrombocytopenia: Clinicopathologic Features and New Perspectives on Anti-PF4 Antibody-Mediated Disorders. J Clin Med., 13(4), 1012. DOI: 10. 3390/jcm13041012 DOI: https://doi.org/10.3390/jcm13041012

Yasgur, B.S. (2020). Three Stages to COVID-19 Brain Damage, New Review Suggests. Medscape. Retrieved from: https://www.medscape.com/viewarticle/933131 (accessed on 05 July 2024)

Published

2024-12-23

How to Cite

Bakalets, O. V., & Fedoniuk, L. Y. (2024). THE ROLE OF SARS-CОV-2 IN THE DEVELOPMENT OF SENSORINEURAL HEARING LOSS. Achievements of Clinical and Experimental Medicine, (4), 6–15. https://doi.org/10.11603/1811-2471.2024.v.i4.15019

Issue

Section

Огляд літератури