SYNTHESIS, ANTIRADICAL AND ANTIMICROBIAL ACTIVITY OF 6-[(AZAHETEROCYCLIL(ARYLAMINO)ETHYL]-3-R-2H-[1,2,4]TRIAZINO[2,3-C]QUINAZOLINE-2-ONES

Authors

  • O. A. Grytsak Zaporizhzhia State Medical and Pharmaceutical University

DOI:

https://doi.org/10.11603/1811-2471.2024.v.i4.14980

Keywords:

[1,2,4]triazino[2,3-c]quinazolines, azaheterocycles, anilines, linker group, antimicrobial and antifungal activity, antiradical activity

Abstract

SUMMARY. The aim – to focus on the search for biologically active compounds among 6-substituted 3-R1-2H-[1,2,4]triazino[2,3-c]quinazoline-2-ones, which combine in their structure a condensed heterocyclic system and "pharmacophoric" saturated azaheterocycles (piperidine, piperazine, azepine) or substituted anilines connected via an ethyl linker group.

Material and Methods. Conventional methods of preparative organic chemistry were used to obtain the target compounds. Their purity and structure were confirmed by elemental analysis, HPLC-MS, and 1H NMR spectroscopy. To evaluate the antimicrobial and antifungal potential of 6-[(azaheterocyclil-(arylamino)-ethyl]-3-R1-2H-[1,2,4]triazino[2,3-c]quinazolin-2-ones, test cultures of bacteria Escherichia coli, Staphylococcus aureus, Mycobacterium luteum, and fungi Candida tenuis, Aspergillus niger were used. The minimum inhibitory concentration (MIC), bactericidal concentration (MBC), and fungicidal concentration (MFC) were determined using the serial dilution method. The antiradical activity was studied using a DPPH radical scavenging model.

Results. The reaction of 6-(1-chloroethyl)-3-R1-2H-[1,2,4]triazino[2,3-c]quinazolin-2-ones with saturated azacycles or anilines yielded a series of 6-[(azacyclic-(arylamino)-ethyl]-3-R1-2H-[1,2,4]triazino[2,3-c]quinazolin-2-ones, which demonstrated satisfactory predicted toxicity, pharmacokinetic parameters, and compliance with major drug-likeness criteria. Antimicrobial screening revealed that the synthesized compounds were practically inactive against Escherichia coli, Staphylococcus aureus, Candida tenuis, and Aspergillus niger. However, compounds 2.3 and 3.1 exhibited moderate antibacterial activity against Mycobacterium luteum. Among the synthesized compounds, only 6-(1-((4-fluorophenyl)amino)ethyl)-3-methyl-2H-[1,2,4]triazino[2,3-c]quinazoline-2-one revealed significant DPPH-radical scavenging activity.

Conclusions. Alkylation products of saturated azaheterocycles and anilines with 6-(1-chloroethyl)-3-R1-2H-[1,2,4]triazino[2,3-c]quinazolin-2-ones exhibit satisfactory predicted toxicity values and pharmacokinetic parameters. Some of the synthesized compounds show moderate antibacterial activity against Mycobacterium luteum and antiradical activity.

References

Knox, C., Wilson, M., Klinger, C. M., Franklin, M., Oler, E., Wilson, A., Pon, A., Cox, J., Chin, N.E., Strawbridge, S.A., Garcia-Patino, M., Kruger, R., Sivakumaran, A., Sanford, S., Doshi, R., Khetarpal, N., Fatokun, O., Doucet, D., Zubkowski, A., Wishart, D.S. (2023). DrugBank 6.0: the DrugBank Knowledgebase for 2024. Nucleic Acids Research, 52(D1), D1265-D1275. DOI: 10.1093/nar/gkad976 DOI: https://doi.org/10.1093/nar/gkad976

Al-Kaf, A.G. (2023). Recent advances on quinazoline. In IntechOpen eBooks. DOI: 10.5772/intechopen.111107 DOI: https://doi.org/10.5772/intechopen.111107

Alagarsamy, V., Chitra, K., Saravanan, G., Solomon, V.R., Sulthana, M., & Narendhar, B. (2018). An overview of quinazolines: Pharmacological significance and recent developments. European Journal of Medicinal Chemistry, 151, 628-685. DOI: 10.1016/j.ejmech.2018.03.076 DOI: https://doi.org/10.1016/j.ejmech.2018.03.076

Al-Kaf, A.G. (2020). Quinazolinone and quinazoline derivatives. BoD – Books on Demand.

Dash, B. (2021). A review on quinazoline heterocycles: A Pharmacophoric Scaffold. Booksclinic Publishing.

Niu, Z., Ma, S., Zhang, L., Liu, Q., & Zhang, S. (2022). Discovery of novel quinazoline derivatives as potent antitumor agents. Molecules, 27(12), 3906. DOI: 10.3390/molecules27123906 DOI: https://doi.org/10.3390/molecules27123906

Zayed, M.F. (2023). Medicinal chemistry of quinazolines as anticancer agents targeting tyrosine kinases. Scientia Pharmaceutica, 91(2), 18. DOI: 10.3390/scipharm 91020018 DOI: https://doi.org/10.3390/scipharm91020018

Kumar, D. Role of Quinazoline in Biological activity: a review. European Chemical Bulletin, 12(4), 281-307.

Karan, R., Agarwal, P., Sinha, M., & Mahato, N. (2021). Recent Advances on quinazoline derivatives: a potential bioactive scaffold in medicinal chemistry. ChemEngineering, 5(4), 73. DOI: 10.3390/chemengineering5040073 DOI: https://doi.org/10.3390/chemengineering5040073

Gomaa, H.A.M. (2022). A comprehensive review of recent advances in the biological activities of quinazolines. Chemical Biology & Drug Design, 100(5), 639-655. DOI: 10.1111/cbdd.14129 DOI: https://doi.org/10.1111/cbdd.14129

Jain, N., Goel, T., Thakar, S., Jadhav, M. & Bansode, D. (2022). An explicative review on the progress of quinazoline scaffold as bioactive agents in the past decade. Medicinal Chemistry, 19(3), 211-245. DOI: 10.2174/1573406418666220606093202 DOI: https://doi.org/10.2174/1573406418666220606093202

Patel, P.J., Vala, R.M., Patel, S.G., Upadhyay, D.B., Rajani, D.P., Damiri, F., Berrada, M., & Patel, H.M. (2023). Catalyst-free synthesis of imidazo[5,1-b]quinazolines and their antimicrobial activity. Journal of Molecular Structure, 1285, 135467. DOI: 10.1016/j.molstruc.2023.135467 DOI: https://doi.org/10.1016/j.molstruc.2023.135467

Li, Z., Zhao, L., Bian, Y., Li, Y., Qu, J., & Song, F. (2022). The antibacterial activity of quinazoline and quinazolinone hybrids. Current Topics in Medicinal Chemistry, 22(12), 1035-1044. DOI: 10.2174/1568026622666220307144015 DOI: https://doi.org/10.2174/1568026622666220307144015

Jafari, E., Khajouei, M.R., Hassanzadeh, F., Hakimelahi, G.H., Khodarahmi, G.A. (2016). Quinazolinone and quinazoline derivatives: recent structures with potent antimicrobial and cytotoxic activities. Semantic Scholar. Research in Pharmaceutical Sciences, 11, 1-14.

Nandwana, N.K., Singh, R.P., Patel, O.P.S., Dhiman, S., Saini, H.K., Jha, P.N., & Kumar, A. (2018). Design and Synthesis of Imidazo/Benzimidazo[1,2-c]quinazoline Derivatives and Evaluation of Their Antimicrobial Activity. ACS Omega, 3(11), 16338-16346. DOI: 10.1021/acsomega. 8b01592 DOI: https://doi.org/10.1021/acsomega.8b01592

Nosulenko, I.S., Voskoboynik, O.Yu., Berest, G.G., Safronyuk, S.L., Kovalenko, S.I., Kamyshnyi, O.M., Polishchuk, N.M., Sinyak, R.S., Katsev, A.V. (2014). Synthesis and Antimicrobial Activity of 6-Thioxo-6,7-dihydro-2H-[1,2,4]triazino[2,3-c]quinazolin-2-one Derivatives. Scientia Pharmaceutica, 82(3), 483–500. DOI: 10.3797/scipharm.1402-10. DOI: https://doi.org/10.3797/scipharm.1402-10

Voskoboynik, O.Yu. (2015). Syntez, fizyko-khimichni ta biolohichni vlastyvosti 6-S- ta 6-N-zamishchenykh 3-R-2H-[1,2,4]tryazyno[2,3-c]khinazolin-2-oniv [Synthesis, physicochemical and biological properties of 6-S- and 6-N-substituted 3-R-2H-[1,2,4]triazino[2,3-c]quinazolin-2-ones]. Pytannia khimii ta khimichnoi tekhnolohii - Questions of chemistry and chemical technology, 4, 9-16. [in Ukrainian]

World Health Organization (WHO). Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 10 December 2023).

Voskoboynik, O.Yu. (2015). Syntez, fizyko-khimichni vlastyvosti ta protypukhlynna aktyvnist' 6-(heterotsyklil-N-ilmetyl)-3-R1-9-R2-2H-[1,2,4]tryazyno[2,3-c]khinazolin-2-oniv. [Synthesis, physicochemical properties and anticancer activity of 6-(heterocyclyl-N-ylmethyl)-3-R1-9-R2-2H-[1,2,4]triazino[2,3-с]quinazolin-2-ones]. Pytannia khimii ta khimichnoi tekhnolohii - Questions of chemistry and chemical technology, 1, 7-12.

Szabo, M., Idiţoiu, C., Chambre, D., & Lupea, A. (2007). Improved DPPH determination for antioxidant activity spectrophotometric assay. Chemical Papers, 61(3), 214-216. DOI: 10.2478/s11696-007-0022-7 DOI: https://doi.org/10.2478/s11696-007-0022-7

Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1). DOI: 10.1038/srep42717 DOI: https://doi.org/10.1038/srep42717

Banerjee, P., Kemmler, E., Dunkel, M., & Preissner, R. (2024). ProTox 3.0: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 52(W1), W513-W520. DOI: 10.1093/nar/gkae303 DOI: https://doi.org/10.1093/nar/gkae303

Published

2024-12-23

How to Cite

Grytsak, O. A. (2024). SYNTHESIS, ANTIRADICAL AND ANTIMICROBIAL ACTIVITY OF 6-[(AZAHETEROCYCLIL(ARYLAMINO)ETHYL]-3-R-2H-[1,2,4]TRIAZINO[2,3-C]QUINAZOLINE-2-ONES. Achievements of Clinical and Experimental Medicine, (4), 84–92. https://doi.org/10.11603/1811-2471.2024.v.i4.14980

Issue

Section

Оригінальні дослідження