STUDY OF THE PHARMACOLOGICAL EFFECT OF TAGETES PATULA L HERB EXTRACT UNDER THE CONDITIONS OF STREPTOZOTOCIN DIABETES IN RATS
DOI:
https://doi.org/10.11603/1811-2471.2024.v.i4.14971Keywords:
Tagetes Patula L herb extract, streptozotocin diabetes, Silymarin, Glibenclamide, antidiabetic effect, antioxidant activity, metabolic disorders, medicinal plantsAbstract
SUMMARY. Type 2 diabetes mellitus (DM2) is one of the most important medical and social problems worldwide, due to the annual increase in the number of patients with DM2, the progressive course of the disease, the severity of complications, and the limited range of drugs. According to international studies, a significant proportion of clinical cases are associated with previous damage to the pancreas by drugs. Medicinal plant raw materials with antioxidant and cytoprotective effects can be considered a promising object for reducing the toxic effect of some drugs on the pancreas.
The aim – to evaluate the effect of Tagetes Patula L grass extract on the change of clinical and biochemical indicators under the conditions of streptozotocin diabetes.
Material and Methods. Experimental diabetes in rats was modeled by a single intraperitoneal injection of streptozotocin (55 mg/kg) against the background of a hypercaloric diet. The studied dry extract of the herb of marigolds (EНTP) and reference drugs were administered in doses of 25, 25 and 0.6 mg/kg, respectively. The dynamics of the body weight of the animals, the levels of glucose, insulin, glycosylated hemoglobin (HbA1c), TBC-reactants, reduced glutathione, catalase, markers of lipid metabolism (cholesterol, triglycerides) were determined. The obtained results were calculated using the methods of descriptive statistics, differences at p<0.05 were considered probable.
Results. It was established, that under the conditions of experimental streptozotocin diabetes, EНTP normalized the body weight of animals, probably reduced hyperglycemia by 1.2 times, HbA1c by 1.1 times, insulin by 1.4 times, normalized indicators of lipid metabolism (reduced triglyceride levels by 1.2 times, cholesterol by 2.1 times, reduced the manifestations of oxidative stress (reduced the content of TB-reactants by 61 %) and normalized endogenous antioxidant protection (increased the activity of catalase by 48.1 %, the content of free glutathione by 73.2 %) compared to the parameters of untreated animals.
Conclusions. EНTP exerts a significant antidiabetic effect under the conditions of streptozotocin diabetes. According to the studied pharmacological activity, EНTP exceeds the effect of the comparative drug Silymarin, and in terms of its ability to normalize indicators of lipid metabolism and antioxidant effect, it exceeds the effectiveness of Glibenclamide.
References
World Health Organization (n.d.). Noncommunicable diseases: Mortality.. Retrieved from https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/ncd-mortality.
Pervynna medychna dopomoha v Ukrayini: dosyahnutyy prohres i nastupni kroky: analiz danykh za 2020–2021 r.: seriya analitychnykh zapysok [Primary health care in Ukraine: progress achieved and next steps: 2020–2021 data analysis: analytical notes series] (2023). Copenhagen: WHO Regional Office for Europe. World Health Organization. Licension: CC BY-NC-SA 3.0 IGO. Doc.number: WHO/EURO:2023-7087-46853-69102 [in Ukrainian] Retrieved from https://iris.who.int/bitstream/handle/10665/367317/WHO-EURO-2023-7087-46853-69102-ukr.pdf?sequence=1.
Manchuri, K.M., Shaik, M.A. & Gopireddy, V.S. (2024). Analytical Methodologies to Detect N-Nitrosamine Impurities in Active Pharmaceutical Ingredients, Drug Products and Other Matrices. Chem Res Toxicol., 37(9), 1456-1483. DOI: 10.1021/acs.chemrestox.4c00234. DOI: https://doi.org/10.1021/acs.chemrestox.4c00234
Sosnowski, K., Nehring, P. & Przybyłkowski, A. (2022). Pancreas and Adverse Drug Reactions: A Literature Review. Drug Saf., 45(9), 929-939. DOI: 10.1007/s40264-022-01204-0. DOI: https://doi.org/10.1007/s40264-022-01204-0
Jones, M.R., Hall, O.M. & Kaye, A.M. (2015). Drug-induced acute pancreatitis: a review. Ochsner J., 15(1), 45-51.
Akshintala, V.S., Kamal, A. & Singh, V.K. (2018). Uncomplicated Acute Pancreatitis: Evidenced-Based Management Decisions. Gastrointest Endosc Clin N Am., 28(4), 425-438. DOI: 10.1016/j.giec.2018.05.008 DOI: https://doi.org/10.1016/j.giec.2018.05.008
Stefanov, O.V. (2001). Doklinichni doslidzhennia likarskykh zasobiv: metod. rek. [Preclinical research of medicines: methodical recommendations]. Kyiv: Avitsena [in Ukrainian].
Zhu, Y., Wang, D., Zhou, S., Zhou, T. (2024). Hypoglycemic Effects of Gynura divaricata (L.) DC Polysaccharide and Action Mechanisms via Modulation of Gut Microbiota in Diabetic Mice. J Agric Food Chem., 72(17), 9893-9905. DOI: 10.1021/acs.jafc.4c00626. DOI: https://doi.org/10.1021/acs.jafc.4c00626
Tsubanova, N.A., Voloshchuk, N.I., Galevych, G.B. (2023). Vplyv ekstraktu travy Tagetes Patula L. na morfostrukturni zminy pidshlunkovoyi zalozy za umov eksperymental'noho streptozotsyn-indukovanoho utvorennya [The influence of Tagetes Patula L. herb extract on the morphostructural changes of the pancreas under experimental streptozotocin-induced injury]. Farmakolohiya ta likars'ka toksykolohiya - Pharmacology and Drug Toxicology, 17 (5), 338–347 [in Ukrainian]. DOI: 10.33250/17.04.338. DOI: https://doi.org/10.33250/17.04.338
Tsubanova, N. & Trutaieva, L. (2021). Antioxidant and anticytolytic action as the basis of the Pancreo-Plant® hepatoprotective effect in acute liver ischemia. Ceska Slov Farm., 70(3), 102-108. DOI: https://doi.org/10.5817/CSF2021-3-100
Mihara, M. & Uchiyama, M. (1978). Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem., 86(1), 271–278. DOI: 10.1016/0003-2697(78)90342-1. DOI: https://doi.org/10.1016/0003-2697(78)90342-1
Verbunt, R.J., van Dockum, W.G., Bastiaanse, E.M., Egas, J.M., & van der Laarse, A. (1995). Glutathione disulfide as an index of oxidative stress during postischemic reperfusion in isolated rat hearts. Mol Cell Biochem., (1), 85-93. DOI: 10.1007/BF00926745. DOI: https://doi.org/10.1007/BF00926745
Undyala, V., Terlecky, S.R., & Vander Heide, R.S. (2011). Targeted intracellular catalase delivery protects neonatal rat myocytes from hypoxia-reoxygenation and ischemia-reperfusion injury. Cardiovasc Pathol., 20(5), 272-280. DOI: 10.1016/j.carpath.2010.06.011. DOI: https://doi.org/10.1016/j.carpath.2010.06.011
Zhu, Y., Devi, S., Kumar, M. & Dahiya, R. S. (2021). Evaluation of Gamma Amino Butyric Acid (GABA) and Glibenclamide Combination Therapy in Streptozotocin Induced Diabetes. Endocr Metab Immune Disord Drug Targets., 21(11), 2005-2016. DOI: 10.2174/1871530320666201208110945. DOI: https://doi.org/10.2174/1871530320666201208110945
Zygula, A., Kosinski, P. & Zwierzchowska, A. (2019). Oxidative stress markers in saliva and plasma differ between diet-controlled and insulin-controlled gestational diabetes mellitus. Diabetes Res Clin Pract., 148, 72-80. DOI: 10.1016/j.diabres.2018.11.021. DOI: https://doi.org/10.1016/j.diabres.2018.11.021
Zu, Y., Wan, L.J., Cui, S.Y., Gong, Y.P. & Li, C.L. (2015). The mitochondrial Na(+)/Ca(2+) exchanger may reduce high glucose-induced oxidative stress and nucleotide-binding oligomerization domain receptor 3 inflammasome activation in endothelial cells. J Geriatr Cardiol., 12(3), 270-278. DOI: 10.11909/j.issn.1671-5411.2015.03.003.
Zorena, K., Jaskulak, M. & Michalska, M. (2022). Air Pollution, Oxidative Stress, and the Risk of Development of Type 1 Diabetes. Antioxidants (Basel), 11(10), 1908. DOI: 10.3390/antiox11101908. DOI: https://doi.org/10.3390/antiox11101908
Zhang, Z.C., Hu, S.H., Peng, Y.Q. & Yan, H.S. (2019). The complete chloroplast genome of Mexican marigold (Tagetes erecta L., Asteraceae). Mitochondrial DNA B Resour., 4(2), 3587-3588. DOI: 10.1080/23802359.2019. 1677191. DOI: https://doi.org/10.1080/23802359.2019.1677191
Di Lorenzo, C., Colombo, F. & Biella, S. (2021). Polyphenols and Human Health: The Role of Bioavailability. Nutrients, 13(1), 273-278. DOI: 10.3390/nu13010273. DOI: https://doi.org/10.3390/nu13010273
Taofiq, O., González-Paramás, A.M. & Barreiro, M.F. (2017). Hydroxycinnamic Acids and Their Derivatives: Cosmeceutical Significance, Challenges and Future Perspectives, a Review. Molecules, 22(2), 281-288. DOI: 10.3390/molecules22020281. DOI: https://doi.org/10.3390/molecules22020281
Zduńska, K., Dana, A. & Kolodziejczak, A. (2018). Antioxidant Properties of Ferulic Acid and Its Possible Application. Skin Pharmacol Physiol., 31(6), 332-336. DOI: 10. 1159/000491755. DOI: https://doi.org/10.1159/000491755
Sneddon, L.U., Halsey, L.G., & Bury, N.R. (2017). Considering aspects of the 3Rs principles within experimental animal biology. J Exp Biol., 1(220), 3007-3016. DOI: 10.1242/jeb.147058. DOI: https://doi.org/10.1242/jeb.147058
Marchyshyn, S.М., Berdey, Т.S. & Demydyak, О.L. (2014). Mikroskopichnyy analiz travy chornobryvtsiv rozlohykh [Microscopic analysis of annual Marigold herb (Tagetes Patula L)]. Farmatsevtychnyy chasopys - Pharmaceutical journal, (3), 12-18 [in Ukrainian]. DOI: 10.11603/2312-0967.2011.3.2713.
Yoon, D.S., Cho, S.Y., Yoon, H.J., & Kim, S.R. (2021). Protective effects of p-coumaric acid against high-fat diet-induced metabolic dysregulation in mice. Biomed Pharmacother., 142, 111969. DOI: 10.1016/j.biopha.2021.111969 DOI: https://doi.org/10.1016/j.biopha.2021.111969
Nguyen, L.V., Nguyen, K.D.A. & Ma, C.T. (2021). p-Coumaric Acid Enhances Hypothalamic Leptin Signaling and Glucose Homeostasis in Mice via Differential Effects on AMPK Activation. Int J Mol Sci., 22(3), 1431. DOI: 10.3390/ijms22031431. DOI: https://doi.org/10.3390/ijms22031431
Yamada, S., Warashina T., Shirota, O., Kato, Y. & Fukuda, T. (2024). Identification of Sinapic Acid Derivatives from Petit Vert Leaves and Their Effects on Glucose Uptake in C2C12 Murine Myoblasts. Biomolecules., 14(10), 1246. DOI: 10.3390/biom14101246. DOI: https://doi.org/10.3390/biom14101246
Naz, R., Saqib, F., Awadallah, S., Wahid, M., Latif, M.F., Iqbal, I. & Mubarak, M.S. (2023). Food Polyphenols and Type II Diabetes Mellitus: Pharmacology and Mechanisms. Molecules, 28(10), 3996 DOI: 10.3390/molecules28103996. DOI: https://doi.org/10.3390/molecules28103996