COVID-19 AND HEART INJURY: CURRENT STATE OF THE PROBLEM
(LITERATURE REVIEW)
DOI:
https://doi.org/10.11603/1811-2471.2024.v.i2.14559Keywords:
COVID-19, SARS-CoV-2, міокард, атеросклерозAbstract
SUMMARY. Coronavirus disease 2019 (COVID-19) has properties of high contagiousness, various clinical manifestations and long incubation period. In addition to the classical tropism for the respiratory system, COVID-19 has a negative effect on the cardiovascular system. Transmitted coronavirus infection causes acute damage of the myocardium, as well as chronic forms of heart and blood vessels affection.
The aim – to analyze literature data on possible forms and mechanisms of heart lesions in patients with a history of coronavirus disease.
Results. Numerous population-based studies have demonstrated an increased risk of acute cardiovascular and thrombotic events during the first year after an acute infection caused by SARS-CoV-2. The main manifestations of damage of the cardiovascular system in patients with COVID-19 are the early development of arrhythmias, acute coronary syndrome, heart failure and atherosclerosis. An important role in the development of lesions of the heart and blood vessels belongs to the cytotoxic effect of the SARS-CoV-2 virus, cytokine storm, angiotensin 2 - mediated effects of the coronavirus and disorders of blood coagulation processes.
Conclusions. Understanding the mechanisms of the cardiotropic effect of the SARS-CoV-2 coronavirus will contribute to the prevention of the early manifestations of cardiovascular events, including fatal ones, in patients with post-covid syndrome.
References
Liu, Y.C., Kuo, R.L., & Shih, S.R. (2020). COVID-19: The first documented coronavirus pandemic in history. Biomedical journal, 43(4), 328-333. https://doi.org/ 10.1016/j.bj.2020.04.007.
https://index.minfin.com.ua/ua/reference/coronavirus/geography/ (addressed for March, 2024).
Hui, D.S.C., & Zumla, A. (2019). Severe acute respiratory syndrome: historical, epidemiologic, and clinical features. Infectious disease clinics of North America, 33(4), 869-889. https://doi.org/10.1016/j.idc.2019.07.001.
de Wit, E., van Doremalen, N., Falzarano, D., & Munster, V. J. (2016). SARS and MERS: recent insights into emerging coronaviruses. Nature reviews. Microbiology, 14(8), 523-534. https://doi.org/10.1038/nrmicro.2016.81.
Rabaan, A.A., Al-Ahmed, S.H., Haque, S., et al. (2020). SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview. Le infezioni in medicina, 28(2), 174-184.
Taoб Y., Zhao, R., Han, J., Li, Y. (2023). Assessing the causal relationship between COVID-19 and post-COVID-19 syndrome: A Mendelian randomisation study. Journal of Global Health, 13, 06054. doi: 10.7189/jogh.13.06054. PMID: 38085233; PMCID: PMC10715454.
Peiris, S., Ordunez, P., DiPette, D., Padwal, R., Ambrosi, P., et al. (2022). Cardiac manifestations in patients with COVID-19: a scoping review. Global heart, 17(1), 2. https://doi.org/10.5334/gh.1037.
Azevedo, R.B., Botelho, B.G., Hollanda, J.V.G., Ferreira, et al. (2021). Covid-19 and the cardiovascular system: a comprehensive review. Journal of human hypertension, 35(1), 4-11. https://doi.org/10.1038/s41371-020-0387-4.
Tuo, H., Li, W., Tang, L., He, B., Yao, B., Mao, P., & Tang, Q. (2021). Cardiac biomarker abnormalities are closely related to prognosis in patients with COVID-19. International heart journal, 62(1), 148-152. https://doi.org/10.1536/ihj.20-180.
Niazi, S., Niazi, F., Doroodgar, F., & Safi, M. (2022). The cardiac effects of COVID-19: review of articles. Current problems in cardiology, 47(2), 100981. https://doi.org/10.1016/j.cpcardiol.2021.100981.
Puntmann, V.O., Shchendrygina, A., Bolanos, C.R., Madjiguène Ka, M., Valbuena, S., Rolf, A., Escher, F., & Nagel, E. (2023). Cardiac involvement due to COVID-19: insights from imaging and histopathology. European cardiology, 18, e58. https://doi.org/10.15420/ecr.2023.02.
Panagiotides, N. G., Poledniczek, M., Andreas, M., Hülsmann, et al. (2024). Myocardial oedema as a consequence of viral infection and persistence-a narrative review with focus on COVID-19 and post COVID sequelae. Viruses, 16(1), 121. https://doi.org/10.3390/v16010121.
Delorey, T.M., Ziegler, C.G.K., Heimberg, G., Normand, R., Yang, Y., et al. (2021). COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature, 595(7865), 107-113. https://doi.org/10.1038/s41586-021-03570-8.
Hanson, P.J., Liu-Fei, F., Ng, C., Minato, T.A., et al. (2022). Characterization of COVID-19-associated cardiac injury: evidence for a multifactorial disease in an autopsy cohort. Laboratory investigation; a journal of technical methods and pathology, 102(8), 814-825. https://doi.org/10.1038/s41374-022-00783-x.
Yarlagadda, L.C., Ghosh, D., Basak, U., et al. (2023). Post-COVID-19 Cardiovascular sequelae and myocarditis. The Journal of the Association of Physicians of India, 71(6), 11-12. https://doi.org/10.5005/japi-11001-0256.
Yu, L., Liu, Y., & Feng, Y. (2024). Cardiac arrhythmia in COVID-19 patients. Annals of noninvasive electrocardiology: the official journal of the International Society for Holter and Noninvasive Electrocardiology, Inc, 29(2), e13105. https://doi.org/10.1111/anec.13105.
Sciaccaluga, C., Cameli, M., Menci, D., Mandoli G.E., Sisti, N., Cameli, P., Franchi, F., Mondillo, S., & Valente, S. (2021). COVID-19 and the burning issue of drug interaction: never forget the ECG. Postgraduate medical journal, 97(1145), 180-184. https://doi.org/10.1136/postgradmedj-2020-138093.
Coromilas, E.J., Kochav, S., Goldenthal, I., et al. (2021). Worldwide survey of COVID-19-associated arrhythmias. Circulation. Arrhythmia and electrophysiology, 14(3), e009458. https://doi.org/10.1161/CIRCEP.120.009458.
Esposito, L., Cancro, F.P., Silverio, A., Di Maio, M., Iannece, P., Damato, A., Alfano, C., De Luca, G., Vecchione, C., & Galasso, G. (2021). COVID-19 and acute coronary syndromes: from pathophysiology to clinical perspectives. Oxidative medicine and cellular longevity, 4936571. https://doi.org/10.1155/2021/4936571.
Stefanini, G.G., Montorfano, M., Trabattoni, D., Andreini, D., et al. (2020). ST-Elevation myocardial infarction in patients with COVID-19: clinical and angiographic outcomes. Circulation, 141(25), 2113-2116. https://doi.org/10.1161/CIRCULATIONAHA.120.047525.
Makarova, Y.A., Ryabkova, V.A., Salukhov, V.V., Sagun, B. V., Korovin, A.E., & Churilov, L. P. (2023). Atherosclerosis, cardiovascular disorders and COVID-19: comorbid pathogenesis. Diagnostics (Basel, Switzerland), 13(3), 478. https://doi.org/10.3390/diagnostics13030478.
Rivero, F., Antuña, P., Cuesta, J., & Alfonso, F. (2021). Severe coronary spasm in a COVID-19 patient. Catheterization and cardiovascular interventions: official journal of the Society for Cardiac Angiography & Interventions, 97(5), E670-E672. https://doi.org/10.1002/ccd.29056.
Nakao, M., Matsuda, J., Iwai, M., Endo, A., Yonetsu, T., Otomo, Y., & Sasano, T. (2020). Coronary spasm and optical coherence tomography defined plaque erosion causing ST-segment-elevation acute myocardial infarction in a patient with COVID-19 pneumonia. Journal of cardiology cases, 23(2), 87-89. https://doi.org/10.1016/j.jccase.2020.09.012.
Collet, J.P., Thiele, H., Barbato, E., Barthélémy, O., Bauersachs, J., et al. (2021). 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. European heart journal, 42(14), 1289-1367. https://doi.org/10.1093/eurheartj/ehaa575.
Makarova, Y.A., Ryabkova, V.A., Salukhov, V.V., Sagun, B.V., Korovin, A.E., & Churilov, L.P. (2023). Atherosclerosis, cardiovascular disorders and COVID-19: comorbid pathogenesis. Diagnostics (Basel, Switzerland), 13(3), 478. https://doi.org/10.3390/diagnostics13030478.
Vinciguerra, M., Romiti, S., Sangiorgi, G.M., Rose, D., Miraldi, F., & Greco, E. (2021). SARS-CoV-2 and atherosclerosis: should COVID-19 be recognized as a new predisposing cardiovascular risk factor? Journal of cardiovascular development and disease, 8(10), 130. https://doi.org/ 10.3390/jcdd8100130.
Ghamar Talepoor, A., & Doroudchi, M. (2022). Immunosenescence in atherosclerosis: A role for chronic viral infections. Frontiers in immunology, 13, 945016. https://doi.org/10.3389/fimmu.2022.945016.
Gospodarczyk, A.Z., Wojciechowska, C., Marczewski, K.P., Gospodarczyk, N.J., & Zalejska-Fiolka, J. (2022). Pathomechanisms of SARS-CoV-2 infection and development of atherosclerosis in patients with COVID-19: A review. Medicine, 101(49), e31540. https://doi.org/10.1097/MD.0000000000031540.
Coto, E., Avanzas, P., & Gómez, J. (2021). The renin-angiotensin-aldosterone system and coronavirus disease 2019. European cardiology, 16, e07. https://doi.org/ 10.15420/ecr.2020.30.
Zou, X., Chen, K., Zou, J., Han, P., Hao, J., & Han, Z. (2020). Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Frontiers of medicine, 14(2), 185-192. https://doi.org/10.1007/s11684-020-0754-0.
Sama, I. E., Ravera, A., Santema, B. T., van Goor, H., et al. (2020). Circulating plasma concentrations of angiotensin-converting enzyme 2 in men and women with heart failure and effects of renin-angiotensin-aldosterone inhibitors. European heart journal, 41(19), 1810-1817. https://doi.org/10.1093/eurheartj/ehaa373.