QUESTIONNAIRE STUDY OF RISK FACTORS FOR HYPOVITAMIN D IN CHILDREN WITH PARALYTIC SYNDROMES DURING THE COVID-19 PANDEMIC: A SINGLE-CENTER CROSS-SECTION STUDY
DOI:
https://doi.org/10.11603/1811-2471.2023.v.i1.13731Keywords:
children, paralytic syndromes, hypovitaminosis D, COVID-19 pandemicAbstract
SUMMARY. The aim – to identify risk factors for hypovitaminosis D in children with paralytic syndromes during the COVID-19 pandemic.
Material and Methods. A single-center cross-sectional study conducted in the autumn – spring 2020–2021 period included the determination of serum 25(OH)D by enzyme immunoassay on the "Labline-90" analyzer (Austria) using the commercial test system "Monobind Inc." (ELISA, USA) and parent questionnaires conducted in 58 children with paralytic syndromes and 63 healthy children. The questionnaire contained four main domains of 36 questions: "Early child development" (3 questions); "Receiving services from health care institutions" (9 questions); "Way of life" (9 questions); "Food and nutrition" (15 questions). The odds ratio was calculated.
Results. All children with paralytic syndromes had motor dysfunction of the III-V level according to the classification of the Gross Motor Function Classification System. In children with paralytic syndromes, the blood serum 25(OH)D index was significantly reduced compared to healthy children. In the same way, the frequency of hypovitaminosis D among them was significantly increased. The risk of developing hypovitaminosis D in children with paralytic syndromes in 3.1 times higher compared to healthy children (OR=3.1; 95 % CI 1.2-8.18; p=0.0188). It was determined that breastfeeding for less than 6 months in children with paralytic syndromes increases the risk of hypovitaminosis D (OR=6.1, 95 % CI 2.7- 13.6, p=0.0001) in the same way as the inability to walk every day in the fresh air (OR=14.5, 95 % CI 1.8-116.3, p=0.0018), inability to move independently (OR = 43.7, 95 % CI 5.6-337.8, p=0.0003); lack of sunbathing at the sea during the COVID-19 pandemic (OR=3.9, 95 % CI 1.5-10.0, p=0.0047), walking outside for less than an hour per day (OR=43.7, 95 % CI 5.6-337.8, p=0.0003).
Conclusions. The risk of developing hypovitaminosis D in children with paralytic syndromes of level III–V according to the Gross Motor Function Classification System is 3.1 times higher compared to healthy children. Risk factors for hypovitaminosis D in children with paralytic syndromes during the COVID-19 pandemic are reduced exposure to the sun, namely, not being able to walk in the fresh air every day, not being able to move independently, not getting insolation at the sea in the summer during the COVID-19 pandemic, walks outside for less than an hour a day.
References
Habas, K., Nganwuchu, C., Shahzad, F., Gopalan, R., Haque, M., Rahman, S., … Nasim, T. (2020). Resolution of coronavirus disease 2019 (COVID-19). Expert. Rev. Anti Infect. Ther., 18(12), 1201-1211. DOI: 10.1080/14787210. 2020.1797487. Epub 2020 Aug 4. PMID: 32749914. DOI: https://doi.org/10.1080/14787210.2020.1797487
Autier, P., Gandini, S., & Mullie, P. (2012). A systematic review: influence of vitamin D supplementation on serum 25-hydroxyvitamin D concentration. J. Clin. Endocrinol. Metab., 97(8), 2606-2613. DOI: 10.1210/jc.2012-1238. Epub 2012 Jun 14. PMID: 22701014. DOI: https://doi.org/10.1210/jc.2012-1238
Brunvoll, S. H., Nygaard, A. B., Ellingjord-Dale, M., Holland, P., Istre, M.S., & Kalleberg, K.T. (2022). Prevention of covid-19 and other acute respiratory infections with cod liver oil supplementation, a low dose vitamin D supplement: quadruple blinded, randomised placebo controlled trial. BMJ, 378, e071245. DOI: 10.1136/bmj-2022-071245. DOI: https://doi.org/10.1136/bmj-2022-071245
Mercola, J., Grant, W.B., & Wagner, C.L. (2020). Evidence Regarding Vitamin D and Risk of COVID-19 and Its Severity. Nutrients, 12(11), 3361. DOI: 10.3390/nu12113361. PMID: 33142828. PMCID: PMC7692080.
Androutsos, O., Perperidi, M., Georgiou, C., & Chouliaras, G. (2021). Lifestyle Changes and Determinants of Children's and Adolescents' Body Weight Increase during the First COVID-19 Lockdown in Greece: The COV-EAT Study. Nutrients, 13(3), 930. DOI: 10.3390/nu13030930. PMID: 33805678; PMCID: PMC7998995. DOI: https://doi.org/10.3390/nu13030930
Deschasaux-Tanguy, M., Druesne-Pecollo, N., Esseddik, Y., de Edelenyi, FS, Allès, B., Andreeva, V.A., … Touvier, M. (2021). Diet and physical activity during the coronavirus disease 2019 (COVID-19) lockdown (March-May 2020): results from the French NutriNet-Santé cohort study. Am. J. Clin. Nutr., 113(4), 924-938. DOI: 10.1093/ajcn/nqaa336. PMID: 33675635; PMCID: PMC7989637. DOI: https://doi.org/10.1093/ajcn/nqaa336
Pietrobelli, A., Pecoraro, L., Ferruzzi, A., Heo, M., Faith, M., Zoller, T., & Heymsfield, S.B. (2020). Effects of COVID-19 Lockdown on Lifestyle Behaviors in Children with Obesity Living in Verona, Italy: A Longitudinal Study. Obesity (Silver Spring), 28(8), 1382-1385. DOI: 10.1002/oby.22861. Epub 2020 Jul 10. PMID: 32352652; PMCID: PMC7267384. DOI: https://doi.org/10.1002/oby.22861
Okuyama, J., Seto, S., Fukuda, Y., Funakoshi, S., Amae, S., Onobe, J., … Imamura, F. (2021). Mental Health and Physical Activity among Children and Adolescents during the COVID-19 Pandemic. Tohoku J. Exp. Med., 253(3), 203-215. DOI: 10.1620/tjem.253.203. PMID: 33775993. DOI: https://doi.org/10.1620/tjem.253.203
Saxena, R., Gupta, V., Rakheja, V., Dhiman, R., Bhardawaj, A., & Vashist, P. (2021). Lifestyle modification in school-going children before and after COVID-19 lockdown. Indian J. Ophthalmol., 69(12), 3623-3629. DOI: 10.4103/ijo.IJO_2096_21. PMID: 34827007; PMCID: PMC8837368. DOI: https://doi.org/10.4103/ijo.IJO_2096_21
Kumar, A., & Samuel, A.J. (2022). How Did the Lockdown Imposed Due to COVID-19 Affect Patients With Cerebral Palsy? Pediatr. Phys. Ther., 34(3), 286-287. DOI: 10.1097/PEP.0000000000000934. Epub 2022 May 30. PMID: 35639551. DOI: https://doi.org/10.1097/PEP.0000000000000934
McKinnon, I., Lewis, T., Mehta, N., Imrit, S., Thorp, J., & Ince, Ch. (2018). Vitamin D in patients with intellectual and developmental disability in secure in-patient services in the North of England. UK B. J. Psych. Bull., 42(1), 24-29. DOI: 10.1192/bjb.2017.8. DOI: https://doi.org/10.1192/bjb.2017.8
Gross Motor Function Classification System for Cerebral Palsy. Retrieved from: https://depts.washington.edu/dbpeds/Screening %20Tools/GMFCS-ER.pdf.
Mercola, J., Grant, W.B., & Wagner, C.L. (2020). Evidence Regarding Vitamin D and Risk of COVID-19 and Its Severity. Nutrients, 12(11), 3361. DOI: 10.3390/nu12113361. PMID: 33142828; PMCID: PMC7692080. DOI: https://doi.org/10.3390/nu12113361
Ali N. (2020). Role of vitamin D in preventing of COVID-19 infection, progression and severity. J. Infect. Public Health, 13(10), 1373-1380. DOI: 10.1016/j.jiph.2020.06.021. Epub 2020 Jun 20. PMID: 32605780; PMCID: PMC7305922. DOI: https://doi.org/10.1016/j.jiph.2020.06.021
Annweiler, C., Beaudenon, M., Gautier, J., Simon, R., Dubée, V., Gonsard, J., & Parot-Schinkel, E. (2020). COVIT-TRIAL study group. COVID-19 and high-dose Vitamin D supplementation TRIAL in high-risk older patients (COVIT-TRIAL): study protocol for a randomized controlled trial. Trials, 21(1), 1031. DOI: 10.1186/s13063-020-04928-5. PMID: 33371905; PMCID: PMC7768266. DOI: https://doi.org/10.1186/s13063-020-04928-5
Gaksch, M., Jorde, R., Grimnes, G., Joakimsen, R., Schirmer, H., Wilsgaard, T., … Pilz, S. (2017). Vitamin D and mortality: Individual participant data meta-analysis of standardized 25-hydroxyvitamin D in 26916 individuals from a European consortium. PLoS One, 12(2), e0170791. DOI: 10.1371/journal.pone.0170791. PMID: 28207791; PMCID: PMC5312926. DOI: https://doi.org/10.1371/journal.pone.0170791
Cacioppo, M., Bouvier, S., Bailly, R., Houx, L., Lempereur, M., Mensah-Gourmel, J., … Pons, C. (2021). Emerging health challenges for children with physical disabilities and their parents during the COVID-19 pandemic: The ECHO French survey. Ann. Phys. Rehabil. Med., 64(3), 101429. DOI: 10.1016/j.rehab.2020.08.001. Epub 2020 Aug 18. PMID: 32818674; PMCID: PMC7434423. DOI: https://doi.org/10.1016/j.rehab.2020.08.001
Paker, N., Yavuz Mollavelioglu, T., Bugdaycı, D., Ones, K., Bardak, A.N., Karacan, I., Yıkıcı, I., & Kesiktas, F.N. (2022). Vitamin D levels in children with cerebral palsy. J. Pediatr. Rehabil. Med., 23. DOI: 10.3233/PRM-190622. Epub ahead of print. PMID: 36031913. DOI: https://doi.org/10.3233/PRM-190622
Holick, M.F., Binkley, N.C., Bischoff-Ferrari, H.A., Gordon, C.M., Hanley, D.A., Heaney, R.P., Murad, M.H., & Weaver, C.M. (2011). Endocrine Society. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab., 96(7), 1911-1930. DOI: 10.1210/jc.2011-0385. Epub 2011 Jun 6. Erratum in: J Clin Endocrinol Metab. 2011 Dec., 96(12), 3908. PMID: 21646368. DOI: https://doi.org/10.1210/jc.2011-0385
Le Roy, C., Barja,S., Sepúlveda, C., Guzmán, M.L., Olivarez, M., Figueroa, M.J., & Alvarez, M. (2021). Vitamin D and iron deficiencies in children and adolescents with cerebral palsy. Neurologia (Engl. Ed.), 36(2), 112-118. English, Spanish. DOI: 10.1016/j.nrl.2017.11.005. Epub 2018 Jan 17. PMID: 29342407. DOI: https://doi.org/10.1016/j.nrleng.2017.11.005
Stein, E.M., Laing, E.M., Hall, D.B., Hausman, D.B., Kimlin, M.G., Johnson, M.A., … Lewis, R.D. (2006). Serum 25-hydroxyvitamin D concentrations in girls aged 4-8 y living in the southeastern United States. Am. J. Clin. Nutr., 83(1), 75-81. DOI: 10.1093/ajcn/83.1.75. PMID: 16400053. DOI: https://doi.org/10.1093/ajcn/83.1.75
Matsuoka, L.Y., Ide, L., Wortsman, J., MacLaughlin, J.A., & Holick, M.F. (1987). Sunscreens suppress cutaneous vitamin D3 synthesis. J. Clin. Endocrinol. Metab., 64(6), 1165-1168. DOI: 10.1210/jcem-64-6-1165. PMID: 3033008. DOI: https://doi.org/10.1210/jcem-64-6-1165