SUBMICROSCOPIC CHANGES OF THE KIDNEY UNDER EXPERIMENTAL HYPERHOMOCYSTEMIA IN THE HIPPER HYPOTHYROESIS
DOI:
https://doi.org/10.11603/1811-2471.2021.v.i4.12811Keywords:
hyperthyroidism, hypothyroidism, hyperhomocysteinemia, kidneysAbstract
SUMMARY. Thyroid dysfunction can cause significant changes in kidney and cardiovascular function. Hypothyroidism has been shown to be associated with decreased renal plasma flow and low glomerular filtration rate. It has been shown that in chronic kidney disease the level of homocysteine (HC) in blood plasma increases, and the problem of hyperhomocysteinemia (HCC) remains the subject of constant attention of nephrologists. GHC is an independent risk factor for cardiovascular complications, especially in patients with impaired renal function and patients with hypothyroidism.
The aim – to establish the reorganization of submicroscopic structural components of the kidneys under the conditions of a simulated GHC on the background of hyper- and hypothyroidism. GHz was simulated by administering thiolactone to animals at a dose of 100 mg / kg body weight once daily for 28 days. Hyperthyroidism was simulated by daily administration of L-thyroxine at a dose of 200 μg / kg on day 21, hypothyroidism was simulated by daily administration of mercazolyl at a dose of 10 mg / kg on day 21. Individual groups of animals were administered L-thyroxine or mercazolyl in parallel with HC.
It was established that under the conditions of combination of GHZ and hypothyroidism in the kidneys the most pronounced destructive-degenerative changes of all components of nephrons and hemomicrocirculatory tract were observed. Hemocapillaries had dilated lumens with destructively altered blood cells (thrombosed and collapsed hemocapillaries), organelles were destructively altered and damaged, and destruction of the outer membrane of mitochondria was observed. Cells with manifestations of apoptosis were also detected.
Conclusions. Both GHZ and hyper- or hypothyroidism cause microcirculation disorders, transcapillary metabolism and ultrastructural reorganization of nuclei and cytoplasm of epitheliocytes of renal corpuscles and nephron tubules, endotheliocytes of hemocapillaries. Destructive-degenerative changes of nephron components, alteration and ultrastructural remodeling of kidney components were particularly pronounced in the combined effects of GHZ and hypothyroidism.
References
Anugwom, C.M., & Leventhal, T.M. (2021). Thyroid disease-induced hepatic dysfunction: a clinical puzzle. ACG Case Rep. J., 8(4), e00555. DOI: 10.14309/crj.0000000000000555.
Azo Najeeb, H., Ahmad Qasim, B., & Ahmad Mohammed, A. (2020). Parental history of coronary artery disease among adults with hypothyroidism: case controlled study. Ann. Med. Surg. (Lond)., 60, 92-101. DOI: 10.1016/j.amsu.2020.10.034.
Barbieri, L., Verdoia, M., Schaffer, A., Niccoli, G., Perrone-Filardi, P., Bellomo, G., ..., & Luca, G.D. (2015). Elevated homocysteine and the risk of contrast-induced nephropathy: a cohort study. Angiology, 66(4), 333-338. DOI: 10.1177/0003319714533401.
Barroso, M., Handy, D.E., & Castro, R. (2017). The link between hyperhomocysteinemia and hypomethylation: implications for cardiovascular disease. J. Inborn Errors Metab. Screen., 5. DOI: 10.1177/2326409817698994.
Basu, G., & Mohapatra, A. (2012). Interactions between thyroid disorders and kidney disease. Indian J. Endocrinol. Metab., 16(2), 204-213. DOI: 10.4103/2230-8210.93737.
Chen, C.H., Yeh, E.L., Chen, C.C., Huang, S.C., & Huang, Y.C. (2017). Vitamin B-6, independent of homocysteine, is a significant factor in relation to inflammatory responses for chronic kidney disease and hemodialysis patients. BioMed. Res. Int., 2017. DOI: 10.1155/2017/ 7367831.
Ciancolo, G., De Pascalis, A., Di Lullo, L., Ronco, C., Zannini, C., & La Manna, G. (2017). Folic acid and homocysteine in chronic kidney disease and cardiovascular disease progression: which comes first? Cardiorenal. Med., 7(4), 255-266. DOI: 10.1159/000471813.
Collins, A.J., Foley, R.N., Herzog, C., Chavers, B., Gilbertson, D., Herzog, C., ..., & Agodoa, L. (2013). US Renal Data System 2012 Annual Data Report. Am. J. Kidney Dis., 61(1) A7, e1-476. DOI: 10.1053/j.ajkd.2012.11.031.
Dolomatov, S.I., & Sataieva, T.P. (2015). Effect of ras-blockers and no-cycle metabolites on the renal functions of rats exposed to thyroxine injections. J. Educ. Health Sport, 5(1), 41-55. DOI: 10.5281/zenodo.13902.
Drechsler, C., Kalim, S., Wenge, J.B., Suntharalingam, P., Hod, T., Thadhani, R.I., ..., & Berg, A.H. (2015). Protein carbamylation is associated with heart failure and mortality in diabetic patients with end-stage renal disease. Kidney Int., 87(6), 1201-1208. DOI: 10.1038/ki.2014.429.
El Ters, M., Patel, S.M., & Norby, S.M. (2014). Hypothyroidism and reversible kidney dysfunction: an essential relationship to recognize. Endocr Pract., 20(5), 490-499. DOI: 10.4158/EP12084.RA.
Elmariah, S., Farrell, L.A., Daher, M., Shi, X., Keyes, M.J., Cain, C.H., …, & Gerszten, R.E. (2016.) Metabolite profiles predict acute kidney injury and mortality in patients undergoing transcatheter aortic valve replacement. J. Am. Heart Assoc., 5(3), e002712. DOI: 10.1161/JAHA.115.002712.
Ertek, S., & Cicero, A.F. (2013). Hyperthyroidism and cardiovascular complications: a narrative review on the basis of pathophysiology. Arch. Med. Sci., 9(5), 944-952. DOI: 10.5114/aoms.2013.38685.
Falk, E., Zhou, J., & Møller, J. (2001). Homocysteine and atherothrombosis. Lipids., 36, S3-11. DOI: 10.1007/s11745-001-0676-x.
Goralskiy, L.P., Homich, V.Т., & Kononskiy, О.І. (2011). Osnovy histolohichnoi tekhniky i morfofunktsionalni metody doslidzhen u normi ta pry patolohii [Fundamentals of histological technique and morphofunctional methods of research in norm and in pathology]. Zhytomyr: Polissia [in Ukrainian].
Iglesias, P., Bajo, M.A., Selgas, R., & Díez, J.J. (2017). Thyroid dysfunction and kidney disease: an update. Rev. Endocr. Metab. Disord., 18(1), 131-144. DOI: 10.1007/s11154-016-9395-7.
Jiang, F., Wang, H., Bao, S., Zhou, H., Zhang, Y., Yan, Y., …, & Shan, Z. (2018). Thyrotropin regulates eNOS expression in the endothelium by PGRN through akt pathway. Front. Endocrinol. (Lausanne), 9, 353. DOI: 10.3389/fendo.2018.00353.
Karanikas, G., Schütz, M., Szabo, M., Becherer, A., Wiesner, K., Dudczak, R., & Kletter, K. (2004). Isotopic renal function studies in severe hypothyroidism and after thyroid hormone replacement therapy. Am. J. Nephrol., 24(1), 41-45. DOI: 10.1159/000075628.
Kim, K., Cho, S.W., Park, Y.J., Lee, K.E., Lee, D.W., & Park, S.K. (2021). Association between iodine intake, thyroid function, and papillary thyroid cancer: a case-control study. Endocrinol. Metab. (Seoul)., 36(4), 790-799. DOI: 10.3803/EnM.2021.1034.
Kim, S.J., Lim, K.S., Song, M.S., Kang, Y., & Lee, S.Y. (2009). Prevalence of hyperhomocysteinemia and related factors in a community-based health examination survey: a cross-sectional study. J. Prev. Med. Public. Health., 42(5), 337-342. DOI: 10.3961/jpmph.2009.42.5.337.
Klein, I., & Danzi, S. (2016). Thyroid disease and the heart. Curr. Probl. Cardiol., 41(2), 65-92. DOI: 10.1016/j.cpcardiol.2015.04.002.
Li, S., Qiu, B., Lu, H., Lai, Y., Liu, J., Luo, J., ..., & Nie, J. (2019). Hyperhomocysteinemia accelerates acute kidney injury to chronic kidney disease progression by downregulating heme Oxygenase-1 expression. Antioxid. Redox. Signal., 30(13), 1635-1650. DOI: 10.1089/ars.2017.7397.
Lin, Y.H., Lin, K.H., & Yeh, C.T. (2020). Thyroid hormone in hepatocellular carcinoma: cancer risk, growth regulation, and anticancer drug resistance. Front. Med. (Lausanne), 7, 174. DOI: 10.3389/fmed.2020.00174.
Long, Y., & Nie, J. (2016). Homocysteine in renal injury. Kidney Dis. (Basel)., 2(2), 80-87. DOI: 10.1159/000444900.
Long, Y., Zhen, X., Zhu, F., Hu, Z., Lei, W., Li, S., ..., & Nie, J. (2017). Hyperhomocysteinemia exacerbates cisplatin-induced acute kidney injury. Int. J. Biol. Sci., 13(2), 219-231. DOI: 10.7150/ijbs.16725.
Mariani, L.H., & Berns, J.S. (2012). The renal manifestations of thyroid disease. J. Am. Soc. Nephrol., 23(1), 22-26. DOI: 10.1681/ASN.2010070766.
McCullough, P.A., Steigerwalt, S., Tolia, K., Chen, S.C., Li, S., Norris, K.C., & Whaley-Connell, A. (2011). Cardiovascular disease in chronic kidney disease: data from the Kidney Early Evaluation Program (KEEP). Curr. Diab. Rep., 11(1), 47-55. DOI: 10.1007/s11892-010-0162-y.
Narasaki, Y., Sohn, P., & Rhee, C.M. (2021). The interplay between thyroid dysfunction and kidney disease. Semin. Nephrol., 41(2), 133-143. DOI: 10.1016/j.semnephrol. 2021.03.008.
Niemczyk, S., Dudek, M., Bartoszewicz, Z., Szamotulska K., Woźniacki, L., Brodowska-Kania, D., ..., & Matuszkiewicz-Rowińska, J. (2013). Determining the enzymatic activities of iodothyronine 5'-deiodinases in renal medulla and cortex. Endokrynol. Pol., 64(3), 182-185.
Ninomiya, T., Kiyohara, Y., Kubo, M., Tanizaki, Y., Tanaka, K., Okubo, K., ..., & Iida, M. (2004). Hyperhomocysteinemia and the development of chronic kidney disease in a general population: the Hisayama study. Am. J. Kidney Dis., 44(3), 437-445.
Pan, Q., Gao, S., Gao, X., Yang, N., Yao, Z., Hu, Y., ..., & Wang, G. (2021). Relation of kidney function and homocysteine in patients with hypothyroidism. Endocr. Connect., 10(5), 502-510. DOI: 10.1530/EC-21-0069.
Perna, A.F., & Ingrosso, D. (2019). Homocysteine and chronic kidney disease: an ongoing narrative. J. Nephrol., 32(5), 673-675. DOI: 10.1007/s40620-019-00622-1.
Ponsoye, M., Paule, R., Gueutin, V., Deray, G., & Izzedine, H. (2013). Kidney and thyroid dysfunction. Nephrol. Ther., 9(1), 13-20. DOI: 10.1016/j.nephro.2012.06.005.
Rhee, C.M., Kalantar-Zadeh, K., Streja, E., Carrero, J.J., Ma, J.Z., Lu, J.L., & Kovesdy, C.P. (2015). The relationship between thyroid function and estimated glomerular filtration rate in patients with chronic kidney disease. Nephrol. Dial. Transplant., 30(2), 282-287. DOI: 10.1093/ndt/gfu303.
Lavado-Autric, R., Calvo, R.M., de Mena, R.M., de Escobar, G.M., & Obregon, M.J. (2013). Deiodinase activities in thyroids and tissues of iodine-deficient female rats. Endocrinol., 154(1), 529-536. DOI: 10.1210/en.2012-1727.
Sandsmark, D.K., Messé, S.R., Zhang, X., Roy, J., Nessel, L., Lee Hamm, L., ..., & Kasner, S.E. (2015) CRIC study investigators. Proteinuria, but not eGFR, predicts stroke risk in chronic kidney disease: chronic renal insufficiency cohort study. Stroke., 46(8), 2075-2080. DOI: 10.1161/STROKEAHA. 115.009861.
Vikrant, S., Chander, S., Kumar, S., & Gupta, D. (2013). Hypothyroidism presenting as reversible renal impairment: an interesting case report. Ren. Fail., 35(9), 1292-1294. DOI: 10.3109/0886022X.2013.824381.
Schairer, B., Jungreithmayr, V., Schuster, M., Reiter, T., Herkner, H., Gessl, A., ..., & Winnicki, W. (2020). Effect of thyroid hormones on kidney function in patients after kidney transplantation. Sci. Rep., 10(1), 2156. DOI: 10.1038/s41598-020-59178-x.
Sen, U., Mishra, P.K., Tyagi, N., & Tyag, S.C. (2010). Homocysteine to hydrogen sulfide or hypertension. Cell Biochem. Biophys., 57(2–3), 49-58. DOI: 10.1007/s12013-010-9079-y.
Stangl, G.I., Weisse, K., Dinger, C., Hirche, F., Brandsch, C., & Eder, K. (2007). Homocysteine thiolactone-induced hyperhomocysteinemia does not alter concentrations of cholesterol and SREBP-2 target gene mRNAS in rats. Exp. Biol. Med. (Maywood)., 232 (1), 81-87.
Sun, J., Shannon, M., Ando, Y., Schnackenberg, L.K., Khan, N.A., Portilla, D., & Beger, R.D. (2012). Serum metabolomic profiles from patients with acute kidney injury: a pilot study. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci., 893-894, 107-113. DOI: 10.1016/j.jchromb.2012. 02.042.
Vargas, F., Moreno, J.M., Rodríguez-Gómez, I., Wangensteen, R., Osuna, A., Alvarez-Guerra, M., & García-Estañ, J. (2006). Vascular and renal function in experimental thyroid disorders. Eur. J. Endocrinol., 154(2), 197-212. DOI: 10.1530/eje.1.02093.
Liakopoulos, V., Dovas, S., Simopoulou, T., Zarogiannis, S., Giannopoulou, M., Kourti, P., …, & Stefanidis, I. (2009). Acute renal failure: a rare presentation of hypothyroidism. Ren. Fail., 31(4), 323-326. DOI: 10.1080/08860220902780127.
Ward, F., Holian, J., & Murray, P.T. (2015). Drug therapies to delay the progression of chronic kidney disease. Clin. Med. (Lond)., 15(6), 550-557. DOI: 10.7861/clinmedicine.15-6-550.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Achievements of Clinical and Experimental Medicine
This work is licensed under a Creative Commons Attribution 4.0 International License.