PECULIARITIES OF ALTERATIONS IN THE MYOCARDIAL STRUCTURE AND FUNCTION IN PATIENTS WITH ACUTE MYOCARDIAL INFARCTION AND TYPE 2 DIABETES TAKING INTO ACCOUNT FABP 4 AND CTRP 3
DOI:
https://doi.org/10.11603/1811-2471.2021.v.i4.12668Keywords:
adipokines, echocardiographic indicators, myocardial infarction, diabetesAbstract
SUMMARY. The study of inflammatory and anti-inflammatory processes of combined acute myocardial infarction (AMI) with type 2 diabetes mellitus (DM) is an urgent problem of modern medicine.
The aim – to determine the relationship between the fatty acid binding protein 4 (FABP 4), C1q/Tumor necrosis factor related protein 3 (CTRP 3) and echocardiographic parameters in patients with AMI in the presence of type 2 DM.
Material and Methods. The study involved examination of 134 patients with AMI. The first group consisted of 60 atients with AMI and the second group comprised 74 patients with AMI and type 2 DM. The control group included 20 healthy individuals. The content of FABP 4 and CTRP 3 was determined by enzyme-linked immunosorbent assay.
Results. Group 1 patients were shown to have a relationship between FABP 4 and end-diastolic size (EDS) (r=-0.458, p<0.01), end-systolic size (ESS) (r=-0.460, p<0.01), end-diastolic volume (EDV) (r=-0.452, p<0.01), left atrium (r=-0.487, p<0.01), left ventricular myocardial mass (LVMM) (r=-0.411, p<0.01), LVMM index (r=-0.419, p<0.01) and between CTRP 3 and EDS (r=0.469, p<0.01), EDV (r=0.425, p<0.01), stroke volume (r=0.407, p<0.05), the relative thickness of the posterior wall of the LV (RPWLVT) (r=-0.469, p<0.01). Group 2 patients were found to have a relationship between FABP 4 and ESS (r=-0.452, p<0.01), end-systolic volume (r=-0.482, p<0.01), LVMM (r=-0.424), p<0.01), LVMMI (r=-0.464, p<0.01), LV ejection fraction (EF) (r=0.402, p<0.01) and between CTRP 3 and EDS (r=0.402, p<0.01), EDV (r=0.424, p<0.01), LV EF (r=-0.465, p<0.05).
Conclusion. In Groups 1 and 2, echocardiographic parameters had reliably low inverse correlations with FABP 4 and low direct correlations with CTRP 3, except for RPWLVT and EF.
References
Syvolap, V.D., Mykhailovska, N.S. (2012). Osoblyvosti pisliainfarktnoho remodeliuvannia sertsia u khvorykh na Q-infarkt miokarda ta tsukrovyi diabet 2 typu [Features of postinfarction heart remodeling in patients with Q-myocardial infarction and type 2 diabetes]. Zaporozhskyi medytsynskyi zhurnal – Zaporozhye Medical Journal, 2(71), 56-59 [in Ukrainian].
Kravchun, P.P. (2014). Strukturno-funktsionalni zminy miokarda za umovy komorbidnosti postinfarktnoho kardiosklerozu ta tsukrovoho diabetu 2-ho typu [Structural and functional changes of the myocardium under the condition of comorbidity of postinfarction cardiosclerosis and type 2 diabetes mellitus]. Lvivskyi klinichnyi visnyk – Lviv Clinical Bulletin, 3(7), 13-16 [in Ukrainian].
Autieri, M.V. (2016). Adipose inflammation at the heart of vascular disease. Clinical Science (London, England: 1979), 130(22), 2101-2104. DOI: https://doi.org/10.1042/CS20160628
Fadaei, R., Moradi, N., Baratchian, M., Aghajani, H., Malek, M., Fazaeli, A. A., & Fallah, S. (2016). Association of C1q/TNF-Related Protein-3 (CTRP3) and CTRP13 Serum Levels with Coronary Artery Disease in Subjects with and without Type 2 Diabetes Mellitus. PloS One, 11(12), e0168773. DOI: https://doi.org/10.1371/journal.pone.0168773
Bergmann, K., & Sypniewska, G. (2013). Diabetes as a complication of adipose tissue dysfunction. Is there a role for potential new biomarkers?. Clinical Chemistry and Laboratory Medicine, 51(1), 177-185. DOI: https://doi.org/10.1515/cclm-2012-0490
Rodríguez-Calvo, R., Girona, J., Alegret, J.M., Bosquet, A., Ibarretxe, D., & Masana, L. (2017). Role of the fatty acid-binding protein 4 in heart failure and cardiovascular disease. The Journal of Endocrinology, 233(3), R173-R184. DOI: https://doi.org/10.1530/JOE-17-0031
Qu, H., Deng, M., Wang, H., Wei, H., Liu, F., Wu, J., & Deng, H. (2015). Plasma CTRP-3 concentrations in Chinese patients with obesity and type II diabetes negatively correlate with insulin resistance. Journal of Clinical Lipidology, 9(3), 289-294. DOI: https://doi.org/10.1016/j.jacl.2015.03.006
Ma, Z.G., Yuan, Y.P., Xu, S.C., Wei, W.Y., Xu, C.R., Zhang, X., …, & Tang, Q.Z. (2017). CTRP3 attenuates cardiac dysfunction, inflammation, oxidative stress and cell death in diabetic cardiomyopathy in rats. Diabetologia, 60(6), 1126-1137. DOI: https://doi.org/10.1007/s00125-017-4232-4
Wu, D., Lei, H., Wang, J.Y., Zhang, C.L., Feng, H., Fu, F.Y., …, & Wu, L.L. (2015). CTRP3 attenuates post-infarct cardiac fibrosis by targeting Smad3 activation and inhibiting myofibroblast differentiation. Journal of Molecular Medicine (Berlin, Germany), 93(12), 1311-1325. DOI: https://doi.org/10.1007/s00109-015-1309-8
Ibanez, B., James, S., Agewall, S., Antunes, M.J., Bucciarelli-Ducci, C., Bueno, H., …, & ESC Scientific Document Group (2018). 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). European Heart Journal, 39(2), 119-177. DOI: https://doi.org/10.1093/eurheartj/ehx393
Cosentino, F., Grant, P.J., Aboyans, V., Bailey, C.J., Ceriello, A., Delgado, V., …, & ESC Scientific Document Group (2020). 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. European Heart Journal, 41(2), 255-323. DOI: https://doi.org/10.1093/eurheartj/ehz486
Davies, M.J., D'Alessio, D.A., Fradkin, J., Kernan, W.N., Mathieu, C., Mingrone, G., …, & Buse, J.B. (2018). Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia, 61(12), 2461-2498. DOI: https://doi.org/10.1007/s00125-018-4729-5
Galderisi, M., Cosyns, B., Edvardsen, T., Cardim, N., Delgado, V., Di Salvo, G., …, & 2016–2018 EACVI Scientific Documents Committee (2017). Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: an expert consensus document of the European Association of Cardiovascular Imaging. European Heart Journal. Cardiovascular Imaging, 18(12), 1301-1310. DOI: https://doi.org/10.1093/ehjci/jex244
Lang, R.M., Badano, L.P., Mor-Avi, V., Afilalo, J., Armstrong, A., Ernande, L., …, & Voigt, J.U. (2015). Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography : Official Publication of the American Society of Echocardiography, 28(1), 1-39. DOI: https://doi.org/10.1016/j.echo.2014.10.003
Obokata, M., Iso, T., Ohyama, Y., Sunaga, H., Kawaguchi, T., Matsui, H., …, & Kurabayashi, M. (2018). Early increase in serum fatty acid binding protein 4 levels in patients with acute myocardial infarction. European Heart Journal. Acute Cardiovascular Care, 7(6), 561-569. DOI: https://doi.org/10.1177/2048872616683635
Aleksandrova, K., Drogan, D., Weikert, C., Schulze, M.B., Fritsche, A., Boeing, H., & Pischon, T. (2019). Fatty Acid-Binding Protein 4 and Risk of Type 2 Diabetes, Myocardial Infarction, and Stroke: A Prospective Cohort Study. The Journal of Clinical Endocrinology and Metabolism, 104(12), 5991-6002. DOI: https://doi.org/10.1210/jc.2019-00477
von Jeinsen, B., Ritzen, L., Vietheer, J., Unbehaun, C., Weferling, M., Liebetrau, C., …, & Keller, T. (2020). The adipokine fatty-acid binding protein 4 and cardiac remodeling. Cardiovascular Diabetology, 19(1), 117. DOI: https://doi.org/10.1186/s12933-020-01080-x
Zhang, J., Qiao, C., Chang, L., Guo, Y., Fan, Y., Villacorta, L., …, & Zhang, J. (2016). Cardiomyocyte Overexpression of FABP4 Aggravates Pressure Overload-Induced Heart Hypertrophy. PloS One, 11(6), e0157372. DOI: https://doi.org/10.1371/journal.pone.0157372
Harada, T., Sunaga, H., Sorimachi, H., Yoshida, K., Kato, T., Kurosawa, K., …, & Obokata, M. (2020). Pathophysiological role of fatty acid-binding protein 4 in Asian patients with heart failure and preserved ejection fraction. ESC Heart Failure, 7(6), 4256-4266. DOI: https://doi.org/10.1002/ehf2.13071
Zhou, M., Bao, Y., Li, H., Pan, Y., Shu, L., Xia, Z., …, & Hoo, R.L. (2015). Deficiency of adipocyte fatty-acid-binding protein alleviates myocardial ischaemia/reperfusion injury and diabetes-induced cardiac dysfunction. Clinical Science (London, England: 1979), 129(7), 547-559. DOI: https://doi.org/10.1042/CS20150073
Yi, W., Sun, Y., Yuan, Y., Lau, W.B., Zheng, Q., Wang, X., …, & Ma, X.L. (2012). C1q/tumor necrosis factor-related protein-3, a newly identified adipokine, is a novel antiapoptotic, proangiogenic, and cardioprotective molecule in the ischemic mouse heart. Circulation, 125(25), 3159-3169. DOI: https://doi.org/10.1161/CIRCULATIONAHA.112.099937
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Achievements of Clinical and Experimental Medicine
This work is licensed under a Creative Commons Attribution 4.0 International License.