CURRENT POSSIBILITIES FOR IMPROVING THE DIAGNOSTIC ALGORITHM AND OUTPUT FORECASTING OF ISCHEMIC STROKE
DOI:
https://doi.org/10.11603/1811-2471.2020.v.i3.11591Keywords:
sympathoadrenal system, receptor, diagnostics, membrane, reactivityAbstract
The article presents the results of a study of the functional state of the sympathoadrenal system in patients with ischemic stroke (IS). New diagnostic and prognostic criteria of the disease based on the identified changes have been developed.
The aim – to improve the diagnostic algorithm for the diagnosis of patients in the acute period of IS taking the peculiarities of changes in β-adrenergic activity of cytoplasmic membranes (ARM) of erythrocytes and establishing new prognostic factors.
Material and Methods. The work was based on the materials of a comprehensive examination of 350 patients with the first in the life of IS on the 1st, 10th and 21st day of the disease. The severity of the condition and the degree of neurological deficit were objectified using the stroke scale of the National Institutes of Health (NIHSS). There were 2 clinical groups: group 1 (n=183) – patients in a state of moderate severity (mean score on the NIHSS scale 11.74±0.33); group 2 (n=167) – patients with severe IS (average score on the NIHSS scale 24.06±0.29). Measurements of complex dielectric constant (CDC) were performed by EHF dielectrometry. Changes in the osmotic resistance of erythrocytes (ORE) under the action of β-blocker (β-AB) were determined by photoelectron colorimetry.
Results. In the debut of IS there is a significant increase in the values of β-ARM in 2.4 times compared with the control. Maximum levels of β-ARM (42.43±3.64 IU) were observed in patients with initially severe disease, which indicates significant stress on the sympathoadrenal system in these patients.
The study was the first to develop an informative, comprehensive approach to the evaluation of peripheral blood erythrocytes in patients with IS, which is based on the analysis of changes in their dielectric characteristics and the degree of ORE under the action of adrenergic drugs.
Conclusions. The application of this approach showed that the deviation of CDC of erythrocytes that were induced by adrenergic substances is a manifestation of a specific response of cells and depends on the functional state of the sympathoadrenal system.
References
Benjamin, E.J., Muntner, P., Alonso, A., Bittencourt, M.S., & Callaway, C.W. (2019). Heart disease and stroke Statistics-2019 update a report from the American Heart Association. Circ., 10, E526-E528. DOI: https://doi.org/10.1161/CIR.0000000000000659
Feigin, V.L., Norrving, B., & Mensah, G.A. (2017). Global burden of stroke. Circ. Res., 3, 439-448. DOI: https://doi.org/10.1161/CIRCRESAHA.116.308413
Boehm, A.K., Esenwa, C., & Elkind, M.S.V. (2017). Stroke risk factors, genetics, and prevention. Circ. Res., 3, 472-495. DOI: https://doi.org/10.1161/CIRCRESAHA.116.308398
Ranta, A., & Lichtman, J.H. (2015). Health economics of cerebrovascular disease. Can we do better? Neurol., 22, 2204-2205.
Thrift, A.G., Thayabaranathan, T., Howard, G., Howard, V.J., Rothwell, P.M., ..., & Cadilhac, D.A. (2017). Global stroke statistics. Int. J. Stroke, 1, 13-32. DOI: https://doi.org/10.1177/1747493016676285
Guzik, A., & Bushnell, C. (2017). Stroke epidemiology and risk factor management. Continuum (Minneap Minn), 1, 15-39. DOI: https://doi.org/10.1212/CON.0000000000000416
Mishchenko, T.S. (2017). Epidemiolohiia tserebrovaskuliarnykh zakhvoriuvan i orhanizatsiia dopomohy khvorym z mozkovym insultom v Ukraini [Epidemiology of cerebrovascular diseases and organization of medical care for patients with stroke in Ukraine]. Ukr. Visn. Psykhonevrol. – Ukrainian Bull. Psychoneurol., 25, 1 (90), 22-24 [in Ukrainian].
Handziuk, V.A. (2014). Dynamika zakhvoriuvanosti ta poshyrenosti khvorob systemy krovoobihu naselennia Ukrainy na suchasnomu etapi: natsionalnyi ta rehionalnyi aspekty [Dynamics of morbidity and prevalence of cardiovascular diseases among ukrainian population at the present stage: national and regional aspects]. Visn. sots. hihiieny ta orhanizatsii okhorony zdorovia Ukrainy – Bulletin of Soc. Hygiene and Health Protection Organization of Ukraine, 2, 74-78. Retrieved from: https://doi.org/10.11603/1681-2786.2014.2.3376 [in Ukrainian].
Vinychuk, S.M., & Fartushnа, O.Ye. (2017). Epidemiolohiia tranzytornykh ishemichnykh atak u strukturi hostrykh porushen mozkovoho krovoobihu v Ukraini ta inshykh krainakh [Epidemiology of transient ischemic attacks in the structure of acute cerebrovascular disorders in Ukraine and in other countries]. Mizhnar. Nevrol. zhurn. – Int. Neurol. J., 5, 105-111 [in Ukrainian].
Fartushna, O.Ye., & Vinychuk, S.M. (2015). Vyiavlennia ta usunennia vaskuliarnykh chynnykiv ryzyku – vazhlyvyi napriamok pervynnoi profilaktyky tranzytornykh ishemichnykh atak ta/chy insultu [Detection and removal of vascular risk factors as important area of primary prevention of transient ischemic attack]. Ukrainskyi medychnyi chasopys – Ukrainian Medical Journal, 1 (105), 23-27 [in Ukrainian].
Shved, N.I., Bakaliuk, O.I., & Zhulkevich, I.V. (1993). Pat. SU 1811376 A 3 A 61 V 5/02. Sposob prognozirovaniya iskhodov ostrogo infarkta miokarda [Pat. SU 1811376 А 3 А 61 В 5/02. A method for predicting the outcomes of acute myocardial infarction]; zayavitel i patentoobladatel Ternopolskiy gosudarstvennyy meditsinskiy institut. No 4899556/14, zayavl. 03.01.1991, opubl. 23.04.1993. Byul. No 15 [in Russian].
Bivard, A., & Parsons, M. (2018). Tissue is more important than time: insights into acute ischemic stroke from modern brain imaging. Curr. Opin. Neurol., 1, 23-27. DOI: https://doi.org/10.1097/WCO.0000000000000520
Lees, K.R., Bornstein, N., Diener, H.C., Gorelick, P.B., Rosenberg, G., Shuaib, A., & Investigators, M. (2013). Results of membrane-activated chelator stroke intervention randomized trial of DP-b99 in acute ischemic stroke. Stroke, 3, 580-584. DOI: https://doi.org/10.1161/STROKEAHA.111.000013
Allen, C.L., & Bayraktutan, U. (2009). Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int. J. Stroke, 6, 461-470. DOI: https://doi.org/10.1111/j.1747-4949.2009.00387.x
Christensen, H. (2001). Proinflammatory cytokines and glutamate in acute stroke. Stroke, 5, 1234-1234. DOI: https://doi.org/10.1161/01.STR.32.5.1234
Akil, E., Tamam, Y., Akil, M.A., Kaplan, I., Bilik, M.Z., Acar, A., & Tamam, B. (2015). Identifying autonomic nervous system dysfunction in acute cerebrovascular attack by assessments of heart rate variability and catecholamine levels. J. Neurosci. Rural Pract., 2, 145.
Walter, U., Kolbaske, S., Patejdl, R., Steinhagen, V., Abu-Mugheisib, M., Grossmann, A., ..., & Benecke, R. (2013). Insular stroke is associated with acute sympathetic hyperactivation and immunodepression. Eur. J. Neurol., 1, 153-159. DOI: https://doi.org/10.1111/j.1468-1331.2012.03818.x
Zhulkevich, I.V., Smiyan, S.I., Havrylyuk, M.E., Kmita, G.G., Kramar, L.T., & Korchinska, R.M. (2000). Metodolohichni pidkhody do vyvchennia yakosti zhyttia v hematolohichnykh doslidzhenniakh [Methodological approaches to the study of quality of life in hematological research]. Visn. Nauk. Dosl. – Bull. of Sci. Res., 3, 16-23 [in Ukrainian].
Arkhypova, K., Volokh, F., Nosatov, A., & Malakhov, V. (2015). Diagnostic potential of microwave techniques in neurology: new insight into beta-adrenergic activity testing. Eur. J. Neurol., 22, 591-591.
Beneduci, A., Cosentino, K., Romeo, S., Massa, R., & Chidichimo, G. (2014). Effect of millimetre waves on phosphatidylcholine membrane models: a non-thermal mechanism of interaction. Soft Matter, 30, 5559-5567. DOI: https://doi.org/10.1039/C4SM00551A
Johnson, J.A., & Terra, S.G. (2002). Вeta-adrenergic receptor polymorphisms: Cardiovascular disease associations and pharmacogenetics. Pharm. Res., 12, 1779-1787. DOI: https://doi.org/10.1023/A:1021477021102
Hausdorff, W.P., Caron, M.G., & Lefkowitz, R.J. (1990). Turning off the signal desensitization of beta-adrenergic receptor funktion. FASEB J., 11, 2881-2889. DOI: https://doi.org/10.1096/fasebj.4.11.2165947