ZINC OXIDE NANOPARTICLES ENHANCE OXIDATIVE AND NITRO-OXIDATIVE STRESS CAUSED BY HERBICIDE GLYPHOSATE

Authors

  • Ya. Yu. Haponenko I. Horbachevsky Ternopil National Medical University
  • N. Ya. Letniak I. Horbachevsky Ternopil National Medical University
  • M. M. Korda I. Horbachevsky Ternopil National Medical University

DOI:

https://doi.org/10.11603/1811-2471.2020.v.i2.11314

Keywords:

nano-ZnO, glyphosate, oxidative and nitro-oxidative stress

Abstract

The development of nanotechnologies contributes to the emergence new ultra high dispersed substance forms called nanomaterials which are widely used in scientific research, industry and medicine. The capability of nanoparticles to increase the transport of chemicals and drugs into cells and through the body barriers provides the possibility of the potentiating of chemical contaminants toxicity in case of their simultaneous intake into the organism.

The aim – to explore the effect of zinc oxide nanoparticles on the ability of herbicide glyphosate to cause oxidative and nitro-oxidative stress in blood serum and liver of experimental rats.

Material and Methods. Suspension of ZnO nanoparticles (0.5 ml) at a dose of 100 mg/kg and glyphosate (in the form of herbicide roundup) at a dose of 250 mg/kg of body weight were administered intragastrically to male rats for 14 days. The toxicants were administered simultaneously and separately. The total activity of NO-synthase, catalase, superoxide dismutase, content of NOx, thiobarbituric acid reactive substances, oxidative modified proteins, reduced glutathione, ceruloplasmin and total serum antioxidant activity were measured in serum and liver.

Results and Discussion. It was shown that zinc oxide nanoparticles affect negatively on the majority of studied parameters. The administration of glyphosate resulted in more profound changes of all indices. However, the maximal changes of the parameters were evidenced in the group of animals that were co-administered with zinc oxide nanoparticles and glyphosate. In that case, the content of thiobarbituric acid reactive substances, oxidative modified proteins, NOx and activity of NO-synthase and superoxide dismutase in rats were significantly worser compared with the similar indices in animals that were administered with the chemical toxicant only.

Conclusions. Zinc oxide nanoparticles enhance the capability of the herbicide glyphosate to cause oxidative and nitro-oxidative stress in blood serum and liver of the experimental rats.

References

Andreyeva, L.I., Kozhemyakin, L.A., & Kishkun A.A. (1988). Modifikatsiya metoda opredeleniya perekisey lipidov v teste s tiobarbiturovoy kislotoy [Modification of the method of lipid peroxides determination by the test with thiobarbituric acid]. Laboratornoye delo – Laboratory Work, 11, 41-43 [in Russian].

Kolb, V.G., & Kamyshnikov, V.S. (1982). Spravochnik po klinicheskoy khimii [Manual oт Сlinical Chemistry]. Minsk: Belarus[in Russian].

Koroliuk, M.A., Ivanova, L.I., & Mayorova, I.G. (1988). Metod opredeleniya aktivnosti katalazy [Method of catalase activity determination]. Laboratornoye delo – Laboratory Work, 1, 16-19 [in Russian].

Lakhtin, V.M., Afanasev, S.S., Lakhtin, M.V. ( 2008). Nanotekhnologii i perspektivy ikh ispolzovaniya v medi­tsine i biotekhnologii [Nanotechnology and the prospects for their use in medicine and biotechnology]. Vestn. RAMN – Bulletin of RAMN, 4, 50-55 [in Russian].

Leonenko, N.S., Demetska, O.V., & Leonenko, O.B. (2016). Osoblyvosti fizyko-khimichnykh vlastyvostei ta toksychnoi dii nanomaterialiv – do problemy otsinky yiknoho nebezpechnoho vplyvu na zhyvi orhanizmy (ohliad lite­ratury) [Features of physicochemical properties and toxic effects of nanomaterials – to the problem of assessing their dangerous effects on living organisms]. Suchasni problemy toksykolohii, kharchovoi ta khimichnoi bezpeky – Modern Problems of Toxicology, Food and Chemical Safety, 1, 64–77 [in Ukrainian].

Meshchyshen, I.F. (1998). Metod vyznachennia okysliuvalnoi modyfikatsii bilkiv plazmy (syrovatky) krovi [Method of determination of oxidative modification of plasma (blood serum) proteins]. Bukovynskyi medychnyi visnyk – Bukovynian Medical Journal, 1 (2), 156-158 [in Ukrainian].

Mykytiuk, M. V. (2011). Nanochastynky ta perspektyvy yikh zastosuvannia v biolohii i medytsyni [Nanoparticles and prospects for their application in biology and medicine]. Problemy ekolohii ta medytsyny – Problems of Ecology and Medicine, 5-6, 41-49 [in Ukrainian].

Trakhtenberh, I.M., & Dmytrukha, N.M. (2013). Nanochastynky metaliv, metody otrymannia, sfery zastosuvannia, fizyko-khimichni ta toksychni vlastyvosti [Metal nanoparticles, production methods, areas of application, physicochemical and toxic properties]. Ukrainskyi zhurnal z problem medytsyny pratsi – Ukrainian Journal on Problems of Work Medicine, 4 (37), 62-74[in Ukrainian].

Chevari, S., Chaba, I., & Sekei, Y. (1985). Rol superoksiddismutazy v okislitelnykh protsessakh kletki i metod opredeleniya yeye v biologicheskom materiale [Importance of superoxide dismutase in oxidative processes of a cell and method of its determination in biological material]. Laboratornoye delo – Laboratory Work, 11, 678-681 [in Russian].

Chekman, I.S. (2009). Nanochastynky: vlastyvosti ta perspektyvy zastosuvannia [Nanoparticles: properties and usage perspectives]. Ukrainskyi biokhimichnyi zhurnal – Ukrainian Biochemistry Journal, 1 (81), 122-129 [in Ukrainian].

Chekman, I.S., Ulberh, Z.R., Rudenko, A.D., Marushko, Yu.V., Hruzina, T.H., Reznichenko, L.S., Dybkova, S.M., Hrebelnyk A.I. (2013). Tsynk i nanotsynk: vlastyvosti, zastosuvannia u klinichnii praktytsi [Zinc and nanozinc: dominance, stagnation in clinical practice]. Ukr. med. Chasopys – Ukrainian Medical Review, 2 (94, III/IV, 42-47 [in Ukrainian].

Ellman, G.L. (1959). Tissne sulfhydryl group. Arch. of Bioch. and Biophys. (82), 70-77. DOI: https://doi.org/10.1016/0003-9861(59)90090-6

Howaida, N., Atti, H., Shalaby, M., Arafah, M. (2013). Oral exposure to zinc oxide nanoparticles induced oxidative damage, inflammation and genotoxicity in rat’s lung. Life Science Journal, 10 (1), 1969-1979.

Jiang, J., & Cai, J. (2018). The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic Chemistry and Applications. Article ID 1062562, 18. Retrieved from: https://doi.org/10.1155/2018/1062562. DOI: https://doi.org/10.1155/2018/1062562

Neiva, TJC., Moraes, ACR., Schwyzer, R., Rocha,TRF., Fries, DM., Silva, AM., & Benedetti, AL. (2010). In vitro effect of the herbicide glyphosate on human blood platelet aggregation and coagulation. Rev. Bras. Hematol. Hemoter., 32 (4), 291-294. DOI: https://doi.org/10.1590/S1516-84842010005000087

Ridnour, L., Sim, J.E. & Hayward, M. (2000). A spectrophotometric method for the direct detection and quantitation of nitric oxide, nitrite, and nitrate in cell culture media. Anal. Biochem., 281, 223-229. DOI: https://doi.org/10.1006/abio.2000.4583

Silva, E. Da., Kembouchea, Y., Tegnera, U., Baunb, A., & Keld A. (2019). Jensen Interaction of biologically relevant proteins with ZnO nanomaterials: Aconfounding factor for in vitro toxicity endpoints. Toxicology in Vitro, 56, 41-51. DOI: https://doi.org/10.1016/j.tiv.2018.12.016

Stock, J., Gutteridge, J.M. & Sharp, R.J. (1974). Assay using brain homogenate for measuring the antioxidant activity of biological fluids. Clin. Sci. and Mol. Med., 47, 215-222. DOI: https://doi.org/10.1042/cs0470215

Stuehr, D.N., Kwon, N.S. & Nathan, C. (1991). Hydroxy-L-arginine is an intermediate in the biosynthesis of nitric oxide from L-arginine. J. Biol. Chem., 266, 6259-6263. DOI: https://doi.org/10.1016/S0021-9258(18)38112-2

Wang, B., Feng, W., & Wang, M. (2008). Acute toxicological impact of nano- and submicroscaled zinc oxide powder on healthy adult mice. Journal of Nanoparticle Research, 10 (2), 263-276. DOI: https://doi.org/10.1007/s11051-007-9245-3

Published

2020-08-17

How to Cite

Haponenko, Y. Y., Letniak, N. Y., & Korda, M. M. (2020). ZINC OXIDE NANOPARTICLES ENHANCE OXIDATIVE AND NITRO-OXIDATIVE STRESS CAUSED BY HERBICIDE GLYPHOSATE . Achievements of Clinical and Experimental Medicine, (2), 77–82. https://doi.org/10.11603/1811-2471.2020.v.i2.11314

Issue

Section

Оригінальні дослідження