THE APPLICATION OF THE ENTEROSORBENT AUT FOR THE CORRECTION OF OXIDATION PROCESSES FOR EXPERIMENTAL COLORECTAL CARCENOGENESIS IN RATS
DOI:
https://doi.org/10.11603/1811-2471.2019.v.i3.10438Keywords:
oxidative stress, antioxidant system, dimethylhydrazine, enterosorbent AUT, oxidative modification of the proteinAbstract
SUMMARY. Malignant neoplasms of the colon are one of the most common diseases of the gastrointestinal tract. The process of tumor development is accompanied by hyperfunction of reactive oxygen species with subsequent violation of the body’s antioxidant protection. Therefore, in addition to antitumor therapy, the use of accompaniment therapy, in particular, enterosorption.
The aim of the study – to evaluate the efficacy of using enterosorbent AUT and its effect on oxidative stress in rats affected by 1,2-dimethylhydrazine.
Material and Methods. The experiments were performed on white male rats, who modeled colon cancer by weekly subcutaneous administration of 1,2-dimethylhydrazine at a dose of 7.2 mg/kg body weight for 30 weeks. Enterosorbent AUT was administered intragastrically daily for 21 days after modeling of carcinogenesis at a dose of 1 ml of suspension (corresponding to 0.2 g net weight of the preparation) per 100 g of body weight of the animal. The development of oxidative stress was studied by the activity of protein oxidative modification, the concentration of products of lipid peroxidation (LPO) by the activity of superoxide dismutase (SOD), catalase.
Results. It was established that oxidative stress develops during carcinogen administration of 1,2-dimethylhydrazine hydrochloride. In experimental animals, the peroxidant and antioxidant balance is disturbed, accompanied by a decrease in the antioxidant system. The use of enterosorbent AUT contributed to the normalization of these indicators.
Conclusions. The results confirm the positive dynamics of the use of detoxification therapy with sorbent AUT during the progressive development of oxidative stress under the conditions of simulated carcinogenesis.
References
Dubinina, Ye.Ye., & Pustyhina, A.V. (2008). Okysniuvalna modyfikatsiia proteiniv, yikh rol pry patolohichnykh stanakh [Oxidative modification of proteins, their role in pathological conditions]. Ukrainskyi biokhimichnyi zhurnal – Ukrainian Biochemical Journal, 80 (6), 5-18 [in Ukrainian].
Zyn, A. (2012). Prooksydantno-antyoksydantnyi homeostaz i membrannyi transport u zhyvykh orhanizmakh [Prooxidant-antioxidant homeostasis and membrane transport in living organisms]. Visnyk Lvivskoho universytetu – Visnyk of Lviv National University, 60, 21-39 [in Ukrainian].
Koroliuk, M.A., Ivanova, L.I. & Maiorova, I.H. (1988). Metod opredeleniya aktivnosti katalazy [Method for determining the activity of catalase]. Lab. Delo – Lab. Business, 1, 16-19 [in Russian].
Lushchak, V.I., Bahniukova, T.V. & Lushchak, O.V. (2004). Pokaznyky oksydatyvnoho stresu. Tiobarbituraktyvni produkty i karbonilni hrupy bilkiv [Indicators of oxidative stress. Thiobarbiturative products and carbonyl groups of proteins]. Ukrainskyi biokhimichnyi zhurnal – Ukrainian Biochemical Journal, 76 (6), 136-141 [in Ukrainian].
Marushchak, M.I. (2012). Rol aktyvnykh form kysniu u rozvytku i prohresuvanni hostroho urazhennia lehen v eksperymenti [Role of reactive oxygen species in the development and progression of acute lung injury in experiment]. Med. khimiia – Med. Chemistry, 1 (50), 104-108 [in Ukrainian].
Marushchak, M.I., Kopanytsia, O.M., & Krynytska, I.A., Yaroshenko, T.Ya. (2017). Peroksydne okysnennia bilkiv stinky tonkoi kyshky, miokarda ta pechinky shchuriv pry eksperymentalnomu zastosuvanni karahinanu [Peroxidation of proteins of the small intestine wall, myocardium and rat liver in experimental use of carrageenan]. Medychna ta klinichna khimiia – Medical and Clinical Chemistry, 4, 109-114 [in Ukrainian].
Muraveva, L. (2010). Okyslytelnaya modyfikatsiya belkov: problemy i perspektyvy issledovaniya [Oxidative modification of proteins: problems and prospects of research]. Fundamentalnye issledovaniya – Fundamental Researches, 1, 74-78 [in Russian].
Soroka, Yu. (2013). Sorbtsiina korektsiia zmin imunolohichnoi reaktyvnosti shchuriv za umov eksperymentalnoho kantserohenezu ta zastosuvannia khimioterapevtychnykh chynnykiv [Sorption correction of changes in the immunological reactivity of rats under experimental carcinogenesis and the use of chemotherapeutic factors]. Svit medytsyny ta biolohii – World of Medicine and Biology, 4 (41), 82-86 [in Ukrainian].
Filipinska, O.M. (2010). Stan аntyoksydantnoi systemy pechinky ta vmist matryksnoi metaloproteinazy-2 tovstoho kyshechnyka u razi dii pokhidnoho maleimidu za eksperymentalnoho kolorektalnoho kantserohenezu shchuriv [The state of the antioxidant system of the liver and the content of matrix metalloproteinase-2-large intestine in the case of action of a derivative of maleimide in experimental colorectal carcinogenesis of rats]. Ukrainskyi biokhimichnyi zhurnal – Ukrainian Biochemical Journal, 4, 69-77 [in Ukrainian].
Chevari, S., Chaba, I. & Sekey, I. (1985). Rol superoksiddismutazy v okislitelnykh protsessakh kletki i metod opredeleniya yeye v biologicheskikh materialakh [The role of superoxide dismutase in the oxidative processes of the cell and the method for determining it in biological materials]. Lab. delo – Lab. Business, 1, 678-681 [in Russian].
Aksoy, S., Cam, N., Gurcan, U., Oz, D., Ozden, K., Altay, S., Durmus G., & Agirbasli M. (2012). Oxidative stress and severity of coronary artery disease in young smokers with acute myocardial infarction. Cardiology Journal, 19 (4), 381-6. doi: 10.5603/CJ.2012.0069. [PubMed]. DOI: https://doi.org/10.5603/CJ.2012.0069
Arigesavan, K., & Sudhandiran, G. (2015). Carvacrol exhibits antioxidant and anti-inflammatory effects against 1, 2-dimethyl hydrazine plus dextran sodium sulfate induced inflammation associated carcinogenicity in the colon of Fischer 344 rats. Biochem. Biophys. Res. Commun., 461 (2), 314-320. DOI: https://doi.org/10.1016/j.bbrc.2015.04.030
Gross, D., & Tolba, R. (2015). Ethics in animal-based research. Eur. Surg. Res., 1-2, 43-57. doi: 10.1159/000377721. DOI: https://doi.org/10.1159/000377721
Hamiza, O.O., Rehman, M.U., Tahir, M., Khan, R., Khan, A.Q., Lateef, A., Ali, F., et al. (2012). Amelioration of 1,2 dmethylhydrazine (DMH) induced colon oxidative stress, inflammation and tumor promotion response by tannic acid in wistar rats. Asian Pacific Journal of Cancer Prevention, 13 (9), 4393-4402. DOI: https://doi.org/10.7314/APJCP.2012.13.9.4393
Harzallah, H.J., Grayaa, R., Kharoubi, W., Maaloul, A., Hammami, M., & Mahjoub, T. (2012). Thymoquinone, the Nigella sativa bioactive compound, prevents circulatory oxidative stress caused by 1,2-dimethylhydrazine in erythrocyte during colon postinitiation carcinogenesi. Oxid. Med. Cell Longev., 4, 1-6. DOI: https://doi.org/10.1155/2012/854065
Okeh, U. (2009). Statistical problems in medical research. East. Afr. J. Public. Health., 6 (1), 1-7. DOI: https://doi.org/10.4314/eajph.v6i3.45762
Perše, M., & Cerar, A. (2005). The dimethylhydrazine induced colorectal tumours in rat - experimental colorectal carcinogenesis. Radiology and Oncology, 39 (1), 61-70.
Perše, M., & Cerar, A. (2010). Morphological and molecular alterations in 1,2 dimethylhydrazine and azoxymethane induced colon carcinogenesis in rats. Journal of Biomedicine and Biotechnology, 21, 1-14.
Ray, P.D., Huang, B.W., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling, 24 (5), 981-990. doi: 10.1016/j.cellsig.2012.01.008. DOI: https://doi.org/10.1016/j.cellsig.2012.01.008
Schieber, M., & Chandel, N.S. (2014). ROS function in redox signaling and oxidative stress. Curr. Biol., 24 (10), 453-462. doi:10.1016/j.cub.2014. 03.034. [PubMed].