ACANTHAMOEBAE AS RESERVOIR OF PATHOGENIC BACTERIA AND VIRUSES (literature review)

Authors

  • A. P. Chobotar O. Bohomolets National Medical University

DOI:

https://doi.org/10.11603/1811-2471.2019.v0.i2.10364

Keywords:

Acanthamoeba sp., coexistence, bacteria, viruses

Abstract

The literature rewiew showed thet free-living protozoa species Acanthamoeba are representatives of large numbers of microecological groups in environmental objects and they constantly interact with other microorganisms (viruses and bacteria) that inhabit these ecological niches. The features of these relationships were studied for over 20 years. A number of pathogenic and opportunistic bacteria that can coexist with acanthamoebae are investigated. For example, the symbiotic interaction of amoeba with enterobacteria, mycobacteria, legionella, pseudomonadae, staphylococci, streptococci and a number of other prokaryotes is described. When co-cultivating the protozoa with bacteria increases the survival time of the latest and their resistance to the influence of harmful environmental factors. A number of scientific papers are also devoted to the study of the interaction of Acanthamoeba sp. with the representatives of the kingdom of Vira, especially the genera Adenovirus, Norfolkvirus, Rotavirus and Enterovirus. The nature of the interaction of bacteria and viruses with representatives of free living protozoa on the cellular level is most often studied by using microscopic and modern molecular genetic methods.

The aim of the study – to conduct the analysis of ability of free-living amoebae to interact with bacteria and viruses, and to act as a reservoir for pathogenic microorganisms.

Conclusion. A detailed analysis of literary sources made it possible to conclude that free-living amoebae are capable of actively absorbing pathogenic microorganisms. It is also proved that free-living amoebae can act as a reservoir for pathogenic microorganisms and serve as a vector for the transmission of pathogens of infectious diseases. Thus, amoebae act as a "Trojan horse" of the microbial world.

References

Greub, G., & Raoult, D. (2004). Microorganisms resistant to free-living amoebae. Clinical Microbiology Reviews, 17 (2), 413-433. doi: 10.1128/cmr.17.2.413-433.2004 DOI: https://doi.org/10.1128/CMR.17.2.413-433.2004

Balczun, C., & Scheid, P. (2017). Free-living amoebae as hosts for and vectors of intracellular microorganisms with public health significance. Viruses, 9 (4), 65. doi: 10.3390/v9040065 DOI: https://doi.org/10.3390/v9040065

Khan, N. (2006). Acanthamoeba: biology and increasing importance in human health. FEMS Microbiology Reviews, 30 (4), 564-595. doi: 10.1111/j.1574-6976.2006.00023.x DOI: https://doi.org/10.1111/j.1574-6976.2006.00023.x

Król-Turmińska, K., & Olender, A. (2017). Human infections caused by free-living amoebae. Annals of Agricultural and Environmental Medicine, 24 (2), 254-260. doi:10.5604/12321966.1233568 DOI: https://doi.org/10.5604/12321966.1233568

Behera, H., Satpathy, G., & Tripathi, M. (2016). Isolation and genotyping of Acanthamoeba spp. from Acanthamoeba meningitis/meningoencephalitis (AME) patients in India. Parasites & Vectors, 9 (1). doi: 10.1186/s13071-016-1729-5 DOI: https://doi.org/10.1186/s13071-016-1729-5

Juan, A., Alonso, L., Olivé, T., Navarro, A., Sulleiro, E., Sánchez de Toledo, J. and Díaz de Heredia, C. (2016). Successful treatment of sinusitis by acanthamoeba in a pediatric patient after allogeneic stem cell transplantation. The Pediatric Infectious Disease Journal, 35 (12), pp.1350-1351. doi:10.1097/inf.0000000000001329 DOI: https://doi.org/10.1097/INF.0000000000001329

Lambrecht, E., Baré, J., Sabbe, K., & Houf, K. (2017). Impact of acanthamoeba cysts on stress resistance of Salmonella Enterica Serovar Typhimurium, Yersinia Enterocolitica 4/O:3, Listeria monocytogenes 1/2a, and Escherichia coli O:26. Applied and Environmental Microbiology, 83 (14). doi: 10.1128/aem.00754-17 DOI: https://doi.org/10.1128/AEM.00754-17

Avalos-Padilla, Y., Knorr, R., Javier-Reyna, R., García-Rivera, G., Lipowsky, R., Dimova, R., & Orozco, E. (2018). The Conserved ESCRT-III Machinery Participates in the Phagocytosis of Entamoeba histolytica. Frontiers in Cellular and Infection Microbiology, 8. doi: 10.3389/fcimb.2018.00053 DOI: https://doi.org/10.3389/fcimb.2018.00053

Siddiqui, R., & Khan, N. (2012). Acanthamoeba is an evolutionary ancestor of macrophages: A myth or reality? Experimental Parasitology, 130 (2), 95-97. doi: 10.1016/j.exppara.2011.11.005 DOI: https://doi.org/10.1016/j.exppara.2011.11.005

Cosson, P., & Lima, W. (2014). Intracellular killing of bacteria: is Dictyosteliuma model macrophage or an alien? Cellular Microbiology, 16 (6), 816-823. doi: 10.1111/cmi.12291 DOI: https://doi.org/10.1111/cmi.12291

Maisonneuve, E., Cateau, E., Leveque, N., Kaaki, S., Beby-Defaux, A., & Rodier, M. (2017). Acanthamoeba castellanii is not be an adequate model to study human adenovirus interactions with macrophagic cells. PLOS ONE, 12 (6), e0178629. doi: 10.1371/journal.pone.0178629 DOI: https://doi.org/10.1371/journal.pone.0178629

Guimaraes, A., Gomes, K., Cortines, J., Peralta, J., & Peralta, R. (2016). Acanthamoeba spp. as a universal host for pathogenic microorganisms: One bridge from environment to host virulence. Microbiological Research, 193, 30-38. doi:10.1016/j.micres.2016.08.001 DOI: https://doi.org/10.1016/j.micres.2016.08.001

Molmeret, M., Horn, M., Wagner, M., Santic, M., & Abu Kwaik, Y. (2005). Amoebae as training grounds for intracellular bacterial pathogens. Applied and Environmental Microbiology, 71 (1), 20-28. doi: 10.1128/aem.71.1.20-28.2005 DOI: https://doi.org/10.1128/AEM.71.1.20-28.2005

Matin, A., & Jung, S. (2011). Interaction of Escherichia coli K1 and K5 with Acanthamoeba castellanii Trophozoites and Cysts. The Korean Journal of Parasitology, 49 (4), 349. doi: 10.3347/kjp.2011.49.4.349 DOI: https://doi.org/10.3347/kjp.2011.49.4.349

Somorin, Y., Bouchard, G., Gallagher, J., Abram, F., Brennan, F. and O’Byrne, C. (2017). Roles for RpoS in survival of Escherichia coli during protozoan predation and in reduced moisture conditions highlight its importance in soil environments. FEMS Microbiology Letters, 364 (19). doi:10.1093/femsle/fnx198 DOI: https://doi.org/10.1093/femsle/fnx198

Tezcan-Merdol, D., Ljungstrom, M., Winiecka-Krusnell, J., Linder, E., Engstrand, L., & Rhen, M. (2004). Uptake and Replication of Salmonella enterica in Acanthamoeba rhysodes. Applied And Environmental Microbiology, 70 (6), 3706-3714. doi: 10.1128/aem.70.6.3706-3714.2004 DOI: https://doi.org/10.1128/AEM.70.6.3706-3714.2004

Douesnard-Malo, F., & Daigle, F. (2011). Increased persistence of Salmonella enterica Serovar Typhi in the presence of Acanthamoeba castellanii. Applied and Environmental Microbiology, 77 (21), 7640-7646. doi: 10.1128/aem.00699-11 DOI: https://doi.org/10.1128/AEM.00699-11

Saeed, A., Abd, H., Edvinsson, B., & Sandström, G. (2008). Acanthamoeba castellanii an environmental host for Shigella dysenteriae and Shigella sonnei. Archives of Microbiology, 191 (1), 83-88. doi: 10.1007/s00203-008-0422-2 DOI: https://doi.org/10.1007/s00203-008-0422-2

Saeed, A., Johansson, D., Sandström, G., & Abd, H. (2012). Temperature depended role of shigella flexneriInvasion plasmid on the Interaction with acanthamoeba castellanii. International Journal of Microbiology, 2012, 1-8. doi: 10.1155/2012/917031 DOI: https://doi.org/10.1155/2012/917031

Anand, C., Skinner, A., Malic, A., & Kurtz, J. (1983). Interaction of L. pneumophila and a free-living amoeba (Acanthamoeba palestinensis). Journal of Hygiene, 91 (02), 167-178. doi: 10.1017/s0022172400060174 DOI: https://doi.org/10.1017/S0022172400060174

Harold King, C., & Barry S. Fields (1991) Effects of cytochalasin D and methylamine on intracellular growth of legionella pneumophila in amoebae and muman monocyte-like cells, Infection and Immunity, 59 (3), 758-763. DOI: https://doi.org/10.1128/iai.59.3.758-763.1991

Mengue, L., Régnacq, M., Aucher, W., Portier, E., Héchard, Y., & Samba-Louaka, A. (2016). Legionella pneumophila prevents proliferation of its natural host Acanthamoeba castellanii. Scientific Reports, 6 (1). doi: 10.1038/srep36448 DOI: https://doi.org/10.1038/srep36448

Adeleke, A. (1996). Legionella-like amebal pathogens–phylogenetic status and possible role in respiratory disease. Emerging Infectious Diseases, 2 (3), 225-230. doi: 10.3201/eid0203.960311 DOI: https://doi.org/10.3201/eid0203.960311

Mba Medie, F., Ben Salah, I., Henrissat, B., Raoult, D., & Drancourt, M. (2011). Mycobacterium tuberculosis complex mycobacteria as amoeba-resistant organisms. Plos ONE, 6(6), e20499. doi: 10.1371/journal.pone.0020499 DOI: https://doi.org/10.1371/journal.pone.0020499

Samba-Louaka, A., Robino, E., Cochard, T., Branger, M., Delafont, V., & Aucher, W. et al. (2018). Environmental mycobacterium avium subsp. paratuberculosis hosted by free-living amoebae. Frontiers in Cellular And Infection Microbiology, 8. doi: 10.3389/fcimb.2018.00028 DOI: https://doi.org/10.3389/fcimb.2018.00028

Wheat, W., Casali, A., Thomas, V., Spencer, J., Lahiri, R., & Williams, D. (2014). Long-term survival and virulence of mycobacterium leprae in amoebal cysts. Plos. Neglected Tropical Diseases, 8 (12), e3405. doi: 10.1371/journal.pntd.0003405 DOI: https://doi.org/10.1371/journal.pntd.0003405

Lamrabet, O., Medie, F., & Drancourt, M. (2012). Acanthamoeba polyphaga-enhanced growth of mycobacterium smegmatis. Plos ONE, 7 (1), e29833. doi: 10.1371/journal.pone.0029833 DOI: https://doi.org/10.1371/journal.pone.0029833

Sanchez-Hidalgo, A., Obregón-Henao, A., Wheat, W., Jackson, M., & Gonzalez-Juarrero, M. (2017). Mycobacterium bovis hosted by free-living-amoebae permits their long-term persistence survival outside of host mammalian cells and remain capable of transmitting disease to mice. Environmental Microbiology, 19 (10), 4010-4021. doi: 10.1111/1462-2920.13810 DOI: https://doi.org/10.1111/1462-2920.13810

Pukatzki, S., Kessin, R., & Mekalanos, J. (2002). The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum. Proceedings of the National Academy of Sciences, 99 (5), 3159-3164. doi: 10.1073/pnas.052704399 DOI: https://doi.org/10.1073/pnas.052704399

Dey, R., Rieger, A., Stephens, C., & Ashbolt, N. (2019). Interactions of pseudomonas aeruginosa with Acanthamoeba polyphaga observed by imaging flow cytometry. Cytometry Part A, 95 (5), 555-564. doi: 10.1002/cyto.a.23768 DOI: https://doi.org/10.1002/cyto.a.23768

de Souza, T., Soares, S., Benitez, L., & Rott, M. (2017). Interaction between methicillin-resistant staphylococcus aureus (MRSA) and Acanthamoeba polyphaga. Current Microbiology, 74 (5), 541-549. doi: 10.1007/s00284-017-1196-z DOI: https://doi.org/10.1007/s00284-017-1196-z

Siddiqui, R., Yee Ong, T., Jung, S., & Khan, N. (2017). Acanthamoeba castellanii interactions with Streptococcus pneumoniae and Streptococcus pyogenes. Experimental Parasitology, 183, 128-132. doi: 10.1016/j.exppara.2017.08.005 DOI: https://doi.org/10.1016/j.exppara.2017.08.005

Abd, H., Saeed, A., Weintraub, A., Nair, G., & Sandstrom, G. (2007). Vibrio cholerae O1 strains are facultative intracellular bacteria, able to survive and multiply symbiotically inside the aquatic free-living amoeba Acanthamoeba castellanii. FEMS Microbiology Ecology, 60 (1), 33-39. doi: 10.1111/j.1574-6941.2006.00254.x DOI: https://doi.org/10.1111/j.1574-6941.2006.00254.x

Abd, H., Saeed, A., Weintraub, A., & Sandstrom, G. (2009). Vibrio cholerae O139 requires neither capsule nor LPS O side chain to grow inside Acanthamoeba castellanii. Journal of Medical Microbiology, 58 (1), 125-131. doi: 10.1099/jmm.0.004721-0 DOI: https://doi.org/10.1099/jmm.0.004721-0

Scheid, P., & Schwarzenberger, R. (2012). Acanthamoeba spp. as vehicle and reservoir of adenoviruses. Parasitology Research, 111 (1), 479-485. doi: 10.1007/s00436-012-2828-7 DOI: https://doi.org/10.1007/s00436-012-2828-7

Staggemeier, R., Arantes, T., Caumo, K., Rott, M., & Spilki, F. (2016). Detection and quantification of human adenovirus genomes in Acanthamoeba isolated from swimming pools. Anais Da Academia Brasileira De Ciências, 88 (suppl. 1), 635-641. doi: 10.1590/0001-3765201620150151 DOI: https://doi.org/10.1590/0001-3765201620150151

Hsueh, T., & Gibson, K. (2015). Interactions between human norovirus surrogates and Acanthamoeba spp. Applied and Environmental Microbiology, 81 (12), 4005-4013. doi: 10.1128/aem.00649-15 DOI: https://doi.org/10.1128/AEM.00649-15

Mattana, A., Serra, C., Mariotti, E., Delogu, G., Fiori, P., & Cappuccinelli, P. (2006). Acanthamoeba castellanii Promotion of In Vitro Survival and Transmission of Coxsackie B3 Viruses. Eukaryotic Cell, 5 (4), 665-671. doi: 10.1128/ec.5.4.665-671.2006 DOI: https://doi.org/10.1128/EC.5.4.665-671.2006

Alotaibi, M. (2011). Internalisation of enteric viruses by acanthamoeba castellanii, via ingestion of virus-infected mammalian cells. Food And Environmental Virology, 3 (3-4), 109-114. doi: 10.1007/s12560-011-9067-4 DOI: https://doi.org/10.1007/s12560-011-9067-4

Danes L., & Cerva L. (1981) Survival of polioviruses and echoviruses in Acanthamoeba castellanii cultivated in vitro. Journal of Hygiene, Epidemiology, Microbiology, and Immunology, 25 (2), 169-174.

Published

2019-08-20

How to Cite

Chobotar, A. P. (2019). ACANTHAMOEBAE AS RESERVOIR OF PATHOGENIC BACTERIA AND VIRUSES (literature review). Achievements of Clinical and Experimental Medicine, (2), 12–21. https://doi.org/10.11603/1811-2471.2019.v0.i2.10364

Issue

Section

Огляд літератури