THE USE OF POLYDEOXYRIBONUCLEOTIDES IN THE COMPLEX TREATMENT OF PATIENTS WITH INJURIES OF THE MANDIBLE (LITERATURE REVIEW)
DOI:
https://doi.org/10.11603/2311-9624.2025.1.15450Keywords:
DNA, PDRN, adenosine A2 receptors, wound healing, polydeoxyribonucleotide, biomaterials, mandibular fracture, maxillofacial fixation, bone regeneration, vascularization and angiogenesis.Abstract
Materials and Methods. The search was carried out in PubMed, Web of Science, ProQuest, GoogleScholar, OpenThesis and national literature until 2024. Results. The total number of publications found that included keywords was 98. Among them, 21 papers were devoted to reconstructive surgery and traumatology in the maxillofacial area, 23 papers to the use of biomaterials to optimize the reparative process, 15 papers on revascularization and angiogenesis of bone defects, and 10 papers on the use of polydeoxyribonucleotide in the management of bone defects. The 36 articles that were most suitable for the keywords and context were selected for the article. Conclusions. Despite the fact that the mechanism of action of polydesoxyribonucleotide has been sufficiently studied, its effect on hard tissues and its use in traumatic injuries and bone defects is not well understood. The use of polydesoxyribonucleotide in the treatment of bone injuries and defects has potential and should be further investigated.
References
Kim K., Ibrahim A. M. S., Koolen P. G. L., Lee B. T., Lin S. J. Trends in facial fracture treatment using the American College of Surgeons National Surgical Quality Improvement Program database. Plast Reconstr Surg. 2014 Mar; 133 (3): 627–38. DOI: 10.1097/01. prs.0000438457.83345.e9
Morrow B. T., Samson T. D., Schubert W., Mackay D. R. Evidence-based medicine: Mandible fractures. Plast Reconstr Surg. 2014 Dec; 134 (6): 1381–90. DOI: 10.1097/ PRS.0000000000000717
Kaura S., Kaur P., Bahl R., Bansal S., Sangha P. Retrospective study of facial fractures. Ann Maxillofac Surg. 2018 Jan- Jun; 8 (1): 78–82. DOI: 10.4103/ams.ams_73_17
Morris C., Bebeau N. P., Brockhoff H., Tandon R., Tiwana P. Mandibular fractures: an analysis of the epidemiology and patterns of injury in 4,143 fractures. J Oral Maxillofac Surg. 2015 May; 73 (5): 951. DOI: 10.1016/ j.joms.2015.01.001
Afrooz P. N., Bykowski M. R., James I. B., Daniali L. N., Clavijo-Alvarez J. A. The epidemiology of mandibular fractures in the United States, Part 1: A review of 13,142 cases from the US National Trauma Data Bank. J Oral Maxillofac Surg. 2015 Dec; 73 (12): 2361–6. DOI: 10.1016/ j.joms.2015.04.032
Kozakiewicz M., Walczyk A. Current frequency of mandibular condylar process fractures. J Clin Med. 2023 Feb 9; 12 (4): 1394. DOI: 10.3390/jcm12041394
Buch K., Mottalib A., Nadgir R. N., Fujita A., Sekiya K., Ozonoff A, et al. Unifocal versus multifocal mandibular fractures and injury location. Emerg Radiol. 2016 Apr; 23 (2): 161–7. DOI: 10.1007/s10140-015-1375-9
Павличук Т. О., Чепурний Ю. В., Копчак А. В. Клінічна ефективність хірургічного лікування переломів голівки нижньої щелепи із використанням навігаційних шаблонів та пацієнто-специфічних імплантатів. Вісн. стоматології. 2020; 37 (3): 41–9.
Nauth A., Schemitsch E., Norris B., Nollin Z., Watson J. T. Critical-size bone defects: is there a consensus for diagnosis and treatment? J Orthop Trauma. 2018 Mar; 32 Suppl 1: S7–11. DOI: 10.1097/BOT.0000000000001115
Keating J. F., Simpson A. H., Robinson C. M. The management of fractures with bone loss. J Bone Joint Surg Br. 2005 Feb; 87 (2): 142–50. DOI: 10.1302/0301-620x .87b2.15874
Wilson I. F., Lokeh A., Benjamin C. I., Hilger P. A., Hamlar D. D., Ondrey F. G., et al. Prospective comparison of panoramic tomography (zonography) and helical computed tomography in the diagnosis and operative management of mandibular fractures. Plast Reconstr Surg. 2001 May; 107 (6): 1369–75. DOI: 10.1097/00006534- 200105000-00008
Roth F. S., Kokoska M. S., Awwad E. E., Martin D. S., Olson G. T., Hollier L. H., et al. The identification of mandible fractures by helical computed tomography and panorex tomography. J Craniofac Surg. 2005 May; 16 (3): 394–9. DOI: 10.1097/01.scs.0000171964.01616.a8
Ochs M., Chung W., Powers D. Trauma surgery. J Oral Maxillofac Surg. 2017 Aug; 75 (8S): e151–94. DOI: 10.1016/ j.joms.2017.04.023
Ellis E. 3rd, Miles B. A. Fractures of the mandible: a technical perspective. Plast Reconstr Surg. 2007 Dec; 120 (7 Suppl 2): 76S–89S. DOI: 10.1097/ 01.prs.0000260721.74357.e7
Bak M., Jacobson A. S., Buchbinder D., Urken M. L. Contemporary reconstruction of the mandible. Oral Oncol. 2010 Feb; 46 (2): 71–6. DOI: 10.1016/ j.oraloncology.2009.11.006
AlGhamdi A. S., Shibly O., Ciancio S. G. Osseous grafting part II: xenografts and alloplasts for periodontal regeneration – a literature review. J Int Acad Periodontol. 2010 Apr; 12 (2): 39–44.
Basyuni S., Ferro A., Santhanam V., Birch M., McCaskie A. Systematic scoping review of mandibular bone tissue engineering. Br J Oral Maxillofac Surg. 2020 Jul; 58 (6): 632–42. DOI: 10.1016/j.bjoms.2020.03.016
Kumar P., Vinitha B., Fathima G. Bone grafts in dentistry. J Pharm Bioallied Sci. 2013 Jun; 5 (Suppl 1): S125–7. DOI: 10.4103/0975-7406.113312
Zhang M., Rao P., Xia D., Sun L., Cai X., Xiao J. Functional reconstruction of mandibular segment defects with individual preformed reconstruction plate and computed tomographic angiography-aided iliac crest flap. J Oral Maxillofac Surg. 2019 Jun; 77 (6): 1293–1304. DOI: 10.1016/j.joms.2019.01.017
Wong R. C., Tideman H., Kin L., Merkx M. A. Biomechanics of mandibular reconstruction: a review. Int J Oral Maxillofac Surg. 2010 Apr; 39 (4): 313–9. DOI: 10.1016/ j.ijom.2009.11.003
Al Maruf D. S. А., Parthasarathia K., Cheng K., Mukherjeea P., McKenzied D. R., Crookd J. M., et al. Current and future perspectives on biomaterials for segmental mandibular defect repair. Int J Polym Mater & Polym Biomater. 2023; 72 (9): 725–37.
Kumar K. A., Rao J. B., Pavan Kumar B., Mohan A. P., Patil K., Parimala K. A prospective study involving the use of platelet rich plasma in enhancing the uptake of bone grafts in the oral and maxillofacial region. J Maxillofac Oral Surg. 2013 Dec; 12 (4): 387–94. DOI: 10.1007/ s12663-012-0466-3
Patel N. R., Gohil P. P. A review on biomaterials: scope, applications & human anatomy significance. Int. J. Emerg. Technol. Adv. Eng. 2012; 2 (4): 91–101.
Quinlan E., López-Noriega A., Thompson E., Kelly H. M., Cryan S. A., O’Brien F. J. Development of collagenhydroxyapatite scaffolds incorporating PLGA and alginate microparticles for the controlled delivery of rhBMP-2 for bone tissue engineering. J Control Release. 2015 Jan 28; 198: 71–9. DOI: 10.1016/j.jconrel.2014.11.021
He Y., Lin S., Ao Q., He X. The co-culture of ASCs and EPCs promotes vascularized bone regeneration in critical-sized bone defects of cranial bone in rats. Stem Cell Res Ther. 2020 Aug 3; 11 (1): 338. DOI: 10.1186/s13287-020-01858-6
Shineh G., Patel K., Mobaraki M., Tayebi L. Functional approaches in promoting vascularization and angiogenesis in bone critical-sized defects via delivery of cells, growth factors, drugs, and particles. J Funct Biomater. 2023 Feb 13; 14 (2): 99. DOI: 10.3390/jfb14020099
Brennan M., Davaine J. M., Layrolle P. Pre-vascularization of bone tissue-engineered constructs. Stem Cell Res Ther. 2013 Aug 14; 4 (4): 96. DOI: 10.1186/scrt307
Simunovic F., Finkenzeller G. Vascularization Strategies in Bone Tissue Engineering. Cells. 2021 Jul 11; 10 (7): 1749. DOI: 10.3390/cels10071749
Chen K., Zhang C., Wang L., Mao Y. Y., Lu J. X., Chen L. Progress on strategies to promote vascularization in bone tissue engineering. Zhongguo Gu Shang. 2015 Apr; 28 (4): 383–8. Chinese.
Marsh D. Concepts of fracture union, delayed union, and nonunion. Clin Orthop Relat Res. 1998 Oct; (355 Suppl): S22–30. DOI: 10.1097/00003086-199810001-00004
Squadrito F., Bitto A., Irrera N., Pizzino G., Pallio G., Minutoli L., et al. Pharmacological activity and clinical use of PDRN. Front Pharmacol. 2017 Apr 26; 8: 224. DOI: 10.3389/fphar.2017.00224
Galeano M., Pallio G., Irrera N., Mannino F., Bitto A., Altavilla D., et al. Polydeoxyribonucleotide: A promising biological platform to accelerate impaired skin wound healing. Pharmaceuticals (Basel). 2021 Oct 29; 14 (11): 1103. DOI: 10.3390/ph14111103
Veronesi F., Dallari D., Sabbioni G., Carubbi C., Martini L., Fini M. Polydeoxyribonucleotides (PDRNs) From skin to musculoskeletal tissue regeneration via adenosine a2a receptor involvement. J Cell Physiol. 2017 Sep; 232 (9): 2299–307. DOI: 10.1002/jcp.25663
Buffoli B., Favero G., Borsani E., Boninsegna R., Sancassani G., Labanca M., et al. Sodium-DNA for bone tissue regeneration: An experimental study in rat calvaria. Biomed Res Int. 2017; 2017: 7320953. DOI: 10.1155/2017/7320953
Koo Y., Yun Y. Effects of polydeoxyribonucleotides (PDRN) on wound healing: Electric cell-substrate impedance sensing (ECIS). Mater Sci Eng C Mater Biol Appl. 2016 Dec 1; 69: 554–60. DOI: 10.1016/j.msec.2016.06.094
Lim H. K., Kwon Y. J., Hong S. J., Choi H. G., Chung S. M., Yang B. E., et al. Bone regeneration in ceramic scaffolds with variable concentrations of PDRN and rhBMP-2. Sci Rep. 2021 Jun 1; 11 (1): 11470. DOI: 10.1038/ s41598-021-91147-w
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 CLINICAL DENTISTRY

This work is licensed under a Creative Commons Attribution 4.0 International License.