Prospects for the use of immunohistochemical methods in the diagnosis and prognosis of the clinical course of generalized periodontitis (literature review)

Authors

  • N. V. Hasiuk І. Horbachevsky Ternopil National Medical University
  • V. B. Radchuk І. Horbachevsky Ternopil National Medical University

DOI:

https://doi.org/10.11603/2311-9624.2022.4.13585

Keywords:

generalized periodontitis, differentiation clusters, lymphocyte, epithelium

Abstract

Summary. The rapid development of morphology made it possible to significantly expand the understanding of the mechanisms of cellular reorganization under the influence of exogenous factors and during inflammatory and proliferative processes. The high specificity and diagnostic informativeness of immunohistochemical markers regarding the formation of prognostic criteria for the clinical course of periodontal tissue diseases and the detailing of the pathogenetic mechanisms of this nosology prompts their deeper study.

The aim of the studyto analyze literary sources with the characteristics of immunohistochemical methods in the diagnosis and prognosis of the clinical course of generalized periodontitis.

Materials and Methods. Review and analysis of scientific and medical literature based on databases Scopus, Web of Science, MedLine, PubMed, NCBI, the study of which does not exceed 10 years, including literature reviews and results of clinical trials.

Results and Discussion. Identification of the cellular composition of the gums in generalized periodontitis is a source of biomaterial for the identification of specific clusters of differentiation, which are highly informative for the diagnosis and prognosis of the clinical course of periodontitis. For example, the expression of specific markers such as CD-4, CD-3, CD-20, Ki-67, CD-68 in the cellular infiltrates of the gingival lamina propria in generalized periodontitis indicates certain pathophysiological processes in generalized periodontitis and can be valuable a prognostic criterion at various stages of the development of this disease.

Conclusions. Epitheliocytes of the mucous membrane of the oral cavity are a strategically important link in the emergence of inflammatory processes of the mucous membrane and periodontal tissues and are the subject of molecular genetic and immunohistochemical studies in dentistry.

References

Tabari, Z.A., Hematzadeh, S., & Keshani, F. (2021). IL29 expression in gingival tissues of chronic periodontitis and aggressive periodontitis patients: An immunohistochemical analysis. Dental Research Journal, 18, 66. DOI: https://doi.org/10.4103/1735-3327.324025

Ruth, D., Mahendra, J., Kumar, A., Namasivayam, A., Mahendra, L., & Devarajan, N. (2020). Role of Cluster of Differentiation 163 in Diabetes-Periodontitis Interplay. Cureus, 12(6), e8523. DOI: 10.7759/cureus.8523. DOI: https://doi.org/10.7759/cureus.8523

Thorbert-Mros, S., Larsson, L., & Berglundh, T. (2015). Cellular composition of long-standing gingivitis and periodontitis lesions. Journal of Periodontal Research, 50(4), 535-543. DOI: 10.1111/jre.12236. DOI: https://doi.org/10.1111/jre.12236

Hasiuk, N.V., Levandovskyi, R.A., Klitynska, O.V., & Borodach, V.O. (2018). Osoblyvosti perebudovy klitynnoho skladu slyzovoyi obolonky porozhnyny rota u khvorykh na heneralizovanyy parodontyt [Peculiarities of restructuring of the cellular composition of the mucous membrane of the oral cavity in patients with generalized periodontitis]. Ukrayina. Zdorovya natsiyi – Ukraine. Health of the Nation, 1, 100-105 [in Ukrainian].

El-Awady, A.R., Elashiry, M., Morandini, A.C., Meghil, M.M., & Cutler, C.W. (2022). Dendritic cells a critical link to alveolar bone loss and systemic disease risk in periodontitis: Immunotherapeutic implications. Periodontology 2000, 89(1), 41-50.

DOI: 10.1111/prd.12428. DOI: https://doi.org/10.1111/prd.12428

Yao, S., Jiang, C., Zhang, H., Gao, X., Guo, Y., & Cao, Z. (2021). Visfatin regulates Pg LPS-induced proinflammatory/prodegradative effects in healthy and inflammatory periodontal cells partially via NF-κB pathway. Biochimica et biophysica acta. Molecular Cell Research, 1868(8), 119042.

DOI: 10.1016/j.bbamcr.2021.119042. DOI: https://doi.org/10.1016/j.bbamcr.2021.119042

Hasiuk, P., Hasiuk, N., Kindiy, D., Ivanchyshyn, V., Kalashnikov, D., & Zubchenko, S. (2016). Characteristics of cellular composition of periodontal pockets. Interventional Medicine & Applied Science, 8(4), 172-177. DOI: 10.1556/1646.8.2016.4.5. DOI: https://doi.org/10.1556/1646.8.2016.4.5

Gao, K., Dou, Y., Lv, M., Zhu, Y., Hu, S., & Ma, P. (2021). Research hotspots and trends of microRNA in periodontology and dental implantology: a bibliometric analysis. Annals of Translational Medicine, 9(14), 1122. DOI: 10.21037/atm-21-726. DOI: https://doi.org/10.21037/atm-21-726

Li, J., Zhang, F., Zhang, N., Geng, X., Meng, C., Wang, X., & Yang, Y. (2019). Osteogenic capacity and cytotherapeutic potential of periodontal ligament cells for periodontal regeneration in vitro and in vivo. Peer J., 7, e6589.

DOI: 10.7717/peerj.6589. DOI: https://doi.org/10.7717/peerj.6589

Özcan, E., Saygun, N.I., Ilıkçı, R., Karslıoğlu, Y., Muşabak, U., & Yeşillik, S. (2017). Increased visfatin expression is associated with nuclear factor-kappa B and phosphatidylinositol 3-kinase in periodontal inflammation. Clinical Oral Investigations, 21(4), 1113-1121. DOI: 10.1007/s00784-016-1871-7. DOI: https://doi.org/10.1007/s00784-016-1871-7

Čebatariūnienė, A., Kriaučiūnaitė, K., Prunskaitė, J., Tunaitis, V., & Pivoriūnas, A. (2019). Extracellular Vesicles Suppress Basal and Lipopolysaccharide-Induced NFκB Activity in Human Periodontal Ligament Stem Cells. Stem Cells and Development, 28(15), 1037-1049. DOI: 10.1089/scd.2019.0021. DOI: https://doi.org/10.1089/scd.2019.0021

Mao, G., Wu, P., Zhang, Z., Zhang, Z., Liao, W., Li, Y., & Kang, Y. (2017). MicroRNA-92a-3p Regulates Aggrecanase-1 and Aggrecanase-2 Expression in Chondrogenesis and IL-1β-Induced Catabolism in Human Articular Chondrocytes. Cellular Physiology and Biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 44(1), 38-52. DOI: 10.1159/000484579. DOI: https://doi.org/10.1159/000484579

Li, C., Li, B., Dong, Z., Gao, L., He, X., Liao, L., Hu, C., Wang, Q., & Jin, Y. (2014). Lipopolysaccharide differentially affects the osteogenic differentiation of periodontal ligament stem cells and bone marrow mesenchymal stem cells through Toll-like receptor 4 mediated nuclear factor κB pathway., Stem Cell Research & Therapy 5(3), 67. DOI: 10.1186/scrt456. DOI: https://doi.org/10.1186/scrt456

Tabari, Z.A., Keshani, F., Sharbatdaran, M., Banishahabadi, A., Nejatifard, M., & Ghorbani, H. (2018). Visfatin expression in gingival tissues of chronic periodontitis and aggressive periodontitis patients: An immunohistochemical analysis. Dental Research Journal, 15(2), 104-110. DOI: https://doi.org/10.4103/1735-3327.226528

Çetiner, D., Uraz, A., Öztoprak, S., & Akça, G. (2019). The role of visfatin levels in gingival crevicular fluid as a potential biomarker in the relationship between obesity and periodontal disease. Journal of Applied Oral Science: Revista FOB, 27, e20180365.

DOI: 10.1590/1678-7757-2018-0365. DOI: https://doi.org/10.1590/1678-7757-2018-0365

Jian, C.X., Fan, Q.S., Hu, Y.H., He, Y., Li, M.Z., Zheng, W.Y., Ren, Y., & Li, C.J. (2017). Effects of rhBMP-2 gene transfection to periodontal ligament cells on osteogenesis. Bioscience Reports, 37(3), BSR20160585. DOI: 10.1042/BSR20160585. DOI: https://doi.org/10.1042/BSR20160585

Rojas, C., García, M. P., Polanco, A. F., González-Osuna, L., Sierra-Cristancho, A., Melgar-Rodríguez, S., Cafferata, E.A., & Vernal, R. (2021). Humanized Mouse Models for the Study of Periodontitis: An Opportunity to Elucidate Unresolved Aspects of Its Immunopathogenesis and Analyze New Immunotherapeutic Strategies. Frontiers in Immunology, 12, 663328.

DOI: 10.3389/fimmu.2021.663328. DOI: https://doi.org/10.3389/fimmu.2021.663328

Tayman, M.A., Koyuncu, İ., & Köklü, N.Ö. (2020). Expression Levels of A Disintegrin-like Metalloproteinase with Thrombospondin Motifs-4 and -5 (ADAMTS-4 and ADAMTS-5) in Inflamed and Healthy Gingival Tissues. Combinatorial Chemistry & High Throughput Screening, 23(2), 168-176. DOI: 10.2174/1386207323666200218113000. DOI: https://doi.org/10.2174/1386207323666200218113000

Liu, Z., He, Y., Xu, C., Li, J., Zeng, S., Yang, X., & Han, Q. (2021). The role of PHF8 and TLR4 in osteogenic differentiation of periodontal ligament cells in inflammatory environment. Journal of Periodontology, 92(7), 1049-1059. DOI: 10.1002/JPER.20-0285. DOI: https://doi.org/10.1002/JPER.20-0285

Kang, W., Du, L., Liang, Q., Zhang, R., Lv, C., & Ge, S. (2021). Transcriptome analysis reveals the mechanism of stromal cell-derived factor-1 and exendin-4 synergistically promoted periodontal ligament stem cells osteogenic differentiation. Peer J., 9, e12091.

DOI: 10.7717/peerj.12091. DOI: https://doi.org/10.7717/peerj.12091

Zizzi, A., Tirabassi, G., Aspriello, S. D., Piemontese, M., Rubini, C., & Lucarini, G. (2013). Gingival advanced glycation end-products in diabetes mellitus-associated chronic periodontitis: an immunohistochemical study. Journal of Periodontal Research, 48 (3), 293301.

DOI: 10.1111/jre.12007. DOI: https://doi.org/10.1111/jre.12007

Hasiuk, N.V., Levandovsky, R.A., Borodach, V.O., & Klitynska, O.V. (2018). Morphological substantiation of criteria of prediction of clinical course of generalized periodontitis. World of Medicine and Biology, 3(65), 46-50. DOI: https://doi.org/10.26724/2079-8334-2018-3-65-46-50

Published

2023-02-28

How to Cite

Hasiuk, N. V., & Radchuk, V. B. (2023). Prospects for the use of immunohistochemical methods in the diagnosis and prognosis of the clinical course of generalized periodontitis (literature review). CLINICAL DENTISTRY, (4), 10–14. https://doi.org/10.11603/2311-9624.2022.4.13585

Issue

Section

Terapeutic stomatology