Clinical-genetic and inter-genetic correlation analysis with expression of miR-29а in patients with pleomorphic adenomas of the salivary glands

Authors

  • I. S. Brodetsky O. Bohomolets National Medical University, Kyiv

DOI:

https://doi.org/10.11603/2311-9624.2020.4.11714

Keywords:

плеоморфні аденоми, генетичні дослідження, miR-29a, апопотоз, клініко-генетичні кореляції, міжге­нетичні кореляції

Abstract

SUMMARY. The most common tumor remains pleomorphic adenoma – 60–90 % of all benign tumors of the salivary glands. The modern genetic area of focus in the diagnosis of salivary gland tumors is the study of the role of miRNA molecules. MiRNAs are small non-coding RNAs that regulate the cell cycle, apoptosis, metabolism, cell development and differentiation. Of the greatest interest among them is proapoptotic miR-29a. It is expressed in 84 % of the pleomorphic adenomas of the salivary glands. There are no articles that would describe the clinical-genetic and inter-genetic correlations with miR-29a in other biopsy specimens, except for the tumor – the salivary gland tissue adjacent to the tumor, the intact gland (control group), and blood.

The aim of the study – clinical-genetic and inter-genetic (with expression of miR-29а) correlation analysis in tissue of pleomorphic adenomas of the large salivary glands that adjacent to the tumor of the tissue of the salivary gland, intact tissue of the salivary gland, was out of touch with the tumor and venous blood.

Materials and Methods. 22 patients with benign tumors of the large salivary glands (pleomorphic adenomas) were used examination materials. The expression of miR-29a was evaluated using reverse transcription and quantitative polymerase chain reaction (qPCR) in real time.

Results and Discussion. Conducted analysis of the level of expression of miRNA–29a  revealed that among 4 groups of indicators (tumor, tissue adjacent to the tumor salivary gland tissue, intact salivary gland that was out of touch with the tumor and venous blood) in patients with pleomorphic adenoma of the large salivary gland the highest expression was noted in the group – salivary gland tissue adjacent to the tumor – (111.93±56.97). 

Conclusions. Conducted correlation analysis of clinical (age, size of the tumor, duration of the disease, distance from the surface of the skin to the tumor) and genetic indices for the level of expression miR-29a in different biological tissues (tumor, tissue adjacent to the tumor salivary gland tissue, intact salivary gland that was out of touch with the tumor and venous blood) in patients with pleomorphic adenoma of the large salivary glands revealed presence one statistically significantly association (miR-29a). Inter-genetic correlation analysis of patients with PA of the large salivary glands (with level of expression miR-29a) with different fragments of biopsy material revealed absence of another statistically significantly association.

References

Matyakin, Ye.G., Drobyshev, A.Yu., & Azizyan, R.I. (2010). Retsidivy smeshannykh opukholey okoloushnykh slyunnykh zhelez [Relapses of mixed tumors of the parotid salivary glands]. Stomatologiya – Dentistry, 89 (1), 75-77 [in Russian].

Brodetskyi, I.S., & Malanchuk, V.O. (2019). Analysis of archive material of patients with salivary gland neoplasms according to the department of

O.O. Bogomolets National Medical University for the last five years. J. Stomatol., 72, 2, 70-76. DOI: https://doi.org/10.5114/jos.2019.86986.

Brodetskyi, I.S., Malanchuk, V.O., & Krotevych, M.S. (2019). Complex immunohistochemical evaluation of pleomorphic adenomas of the salivary glands. Healthy Aging Res., 8, 9, 1-6. DOI:10.35248/har.2019.8.09.

Carleton, M., Cleary, M.A., & Linsley, P.S. (2007). MicroRNAs and cell cycle regulation. Cell Cycle, 6, 2127-2132. DOI:10.4161/cc.6.17.4641.

Jovanovic, M., & Hengartner, M.O. (2006). miRNAs and apoptosis: RNAs to die for. Oncogene, 25, 6176-6187. DOI:10.1038/sj.onc.1209912.

Boehm, M., & Slack, F.J. (2006). MicroRNA control of lifespan and metabolism. Cell Cycle, 5, 837-840. DOI:10.4161/cc.5.8.2688.

Harfe, B.D. (2005). MicroRNAs in vertebrate development. Curr. Opin. Genet. Dev., 15, 410-415. DOI:10.1016/j.gde.2005.06.012.

Jin, P., Alisch, R.S., & Warren, S.T. (2004). RNA and microRNAs in fragile X mental retardation. Nat. Cell Biol., 6, 1048-1053. DOI:10.1038/ncb1104-1048.

Poy, M.N., Eliasson, L., Krutzfeldt, J., Kuwajima, S., Ma, X.S., MacDonald, P.E., ..., & Stoffel, M. (2004). A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 432 (7014), 226-230. DOI:10.1038/nature03076.

Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., ..., & Golub, T.R. (2005). MicroRNA expression profiles classify human cancers. Nature, 435, 834-838. DOI:10.1038/nature03702.

Xiong, Y., Fang, J.H., Yun, J.P., Yang, J., Zhang, Y., Jia, W.H., & Zhuang, S.-M. (2010). Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatol., 51 (3), 836-845. DOI:10.1002/hep.23380.

Kinoshita, T., Nohata, N., Hanazawa, T., Kikkawa, N., Yamamoto, N., Yoshino, H., …, & Seki, N. (2013). Tumour-suppressive microRNA-29s inhibit cancer cell migration and invasion by targeting laminin-integrin signalling in head and neck squamous cell carcinoma. Br. J. Cancer, 109 (10), 2636-2645. DOI:10.1038/bjc.2013.607.

Malanchuk, V.O., Lohvinenko, I.P., & Malanchuk, T.O. (2011). Khirurhichna stomatolohiia ta shchelepno-lytseva khirurhiia [Oral and maxillofacial surgery]. Kyiv: Lohos [in Ukrainian].

Flores, B.C., Lourenço, S.V., & Damascena, A.S. (2017). Altered expression of apoptosis-regulating miRNAs in salivary gland tumors suggests their involvement in salivary gland tumorigenesis. Virchows Arch., 470 (3), 291-299. DOI: 10.1007/s00428-016-2049-z.

Mytsyk, Yu., Dosenko, V., Borys, Yu., Kucher, A., Gazdikova, K., Busselberg, D., ..., & Manyuk, L. (2018). MicroRNA-15a expression measured in urine samples as a potential biomarker of renal cell carcinoma. Int. Urol. Nephrol., 50 (5), 851-859. DOI: 10.1007/s11255-018-1841-x.

R statistical environment (version 3.5). Retrieved from: https://www.r-project.org (Last accessed:11.10.2019).

Kolmogorov-Smirnov test. Retrieved from: https://ru.wikipedia.org/wiki/Kolmogorov'sconsent_criterion (Last accessed:11.10.2019).

Levene's test. Retrieved from: https://en.wikipedia.org/wiki/Levene %27s_test (Last accessed:11.10.2019).

Analysis of variance (Oneway ANOVA). Retrieved from: https://en.wikipedia.org/wiki/Analysis_of variance (Last accessed: 11.10.2019).

Welch test. Retrieved from: https://en.wikipedia.org/wiki/Welch %27s_t-test (Last accessed: 11.10.2019).

Brown-Forsythe test. Retrieved from: https://en.wikipedia.org/wiki/Brown%E2%80%93Forsythe_test (Last accessed: 11.10.2019).

Bonferroni test. Retrieved from: https://en.wikipedia.org/wiki/Bonferroni_correction (Last accessed: 11.10.2019).

Pearson correlation coefficient. Retrieved from: https://uk.wikipedia.org/wiki/ Pearson_correlation_coefficient (Last accessed: 11.10.2019).

Acunzo, M., Romano, G., Wernicke, D., & Croce, C.M. (2015). MicroRNA and cancer-a brief overview. Adv. Biol. Regul., 57, 1-9. DOI: 10.1016/j.jbior.2014.09.013.

Denaro, M., Navari, E., Ugolini, C., Seccia, V., Donati, V., Casani, A.P., & Basolo, F. (2019). A microRNA signature for the differential diagnosis of salivary gland tumors. PLoS ONE, 14 (1), e0210968. DOI:10.1371/journal.pone.0210968.

Published

2021-02-04

How to Cite

Brodetsky, I. S. (2021). Clinical-genetic and inter-genetic correlation analysis with expression of miR-29а in patients with pleomorphic adenomas of the salivary glands. CLINICAL DENTISTRY, (4), 19–26. https://doi.org/10.11603/2311-9624.2020.4.11714

Issue

Section

Surgical stomatology