Comprehensive diagnosis of cartilage damage for temporomandibular joint traumatic diseases

Authors

  • Kh. R. Pohranychna Danylo Halytskyi Lviv National Medical University
  • R. Z. Ohonovskyi Danylo Halytskyi Lviv National Medical University
  • Yu. B. Pasternak Danylo Halytskyi Lviv National Medical University

DOI:

https://doi.org/10.11603/2311-9624.2020.1.11218

Keywords:

temporomandibular joint, chondrodestruction

Abstract

Over the past decades, the diagnostic spectrum of affected articular cartilage has provided many options for recognition, visualization, quantification and analysis related to the progression from focal cartilage damage to the development of a common disease. Accurate diagnosis of the temporomandibular joints damage, especially cartilage tissue, is a prerequisite for successful treatment and helps to improve the prognosis in patients with joint diseases of various etiologies.

The aim of the study – to offer updates and proper understanding of the articular cartilage diagnosis for clinical and research purposes from early focal matrix damage and degeneration to a generalized intraarticular process, focusing on reliability, clinical value, current condition and possible use.

Materials and Methods. A retrospective analysis of the medical literature was carried out by comparing all possible methods for examination of the temporomandibular joints, including clinical signs and symptoms, x-ray studies, arthroscopy and magnetic resonance imaging (MRI), ultrasound, biochemical parameters, and etc.

Results and Discussion. A comparative analysis of instrumental and laboratory parameters proved the feasibility of the latest methods usage for the diagnosis of articular cartilage degradation, such as delayed gadolinium MRI of cartilage, optical coherence tomography and genetic profiling, relating to various aspects of cartilage morphology and functioning. The ability to identify markers of the cartilage damage and their correlation with other indicators makes it possible to diagnose all temporomandibular disorders with reasonable confidence and plan for adequate treatment.

Conclusions. The variety of the temporomandibular joint diagnostic methods is based on visualization, biochemical and biomechanical characteristics of the articular cartilage. It is expected that technical improvement and expansion of knowledge about the onset and dynamics of the disease will positively influence on current trends in the diagnosis of the technique and will become a reliable basis for the development of new tretment methods.

References

Burr, D.B. (2004). Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthrosis. Osteoarthritis Cartilage, 12 (suppl A), S20-S30. DOI: https://doi.org/10.1016/j.joca.2003.09.016

Lohmander, L.S., Englund, P.M., Dahl, L.L., & Roos, E.M. (2007). The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am. J. Sports Med., 35 (10), 1756-1769. DOI: https://doi.org/10.1177/0363546507307396

Buckwalter, J.A., Mankin, H.J., & Grodzinsky, A.J. (2005). Articular cartilage and osteoarthritis. Instr. Course Lect., 54, 465-480.

Kidd, B.L. (2006). Osteoarthritis and joint pain. Pain, 123 (1-2), 6-9. DOI: https://doi.org/10.1016/j.pain.2006.04.009

Altman, R., Asch, E., Bloch, D., Bole, G., Borenstein, D., Brandt, K., …, & Hochberg, M. (1986). Development of criteria for the classification and reporting of osteoarthritis: classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum., 29 (8), 1039-1049. DOI: https://doi.org/10.1002/art.1780290816

Brandt, K.D., Doherty, M., & Lohmander, L.S. (2003). Osteoarthritis. 2nd ed New York: Oxford University Press.

Roos, E.M., & Lohmander, L.S. (2003). The Knee injury and Osteoarthritis Outcome Score (KOOS): from joint injury to osteoarthritis. Health Qual Life Outcomes, 1, 64.

Peat, G., Thomas, E., Duncan, R., Wood, L., Hay, E., & Croft, P. (2006). Clinical classification criteria for knee osteoarthritis: performance in the general population and primary care. Ann Rheum Dis., 65 (10), 1363-1367. DOI: https://doi.org/10.1136/ard.2006.051482

Kellgren, J.H., & Lawrence, J.S. (1957). Radiological assessment of osteo-arthrosis. Ann Rheum Dis., 16 (4), 494-502. DOI: https://doi.org/10.1136/ard.16.4.494

Altman, R.D., & Gold, G.E. (2007). Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthritis Cartilage, 15 (suppl A), A1-A56. DOI: https://doi.org/10.1016/j.joca.2006.11.009

Nagaosa, Y., Mateus, M., Hassan, B., Lanyon, P., & Doherty, M. (2000). Development of a logically devised line drawing atlas for grading of knee osteoarthritis. Ann Rheum. Dis., 59 (8), 587-595. DOI: https://doi.org/10.1136/ard.59.8.587

Kijowski, R., Blankenbaker, D.G., Stanton, P.T., Fine, J.P., & De Smet, A.A. (2006). Radiographic findings of osteoarthritis versus arthroscopic findings of articular cartilage degeneration in the tibiofemoral joint. Radiology, 239 (3), 818-824. DOI: https://doi.org/10.1148/radiol.2393050584

Kijowski, R., Blankenbaker, D., Stanton, P., Fine, J., & De, S.A. (2006). Arthroscopic validation of radiographic grading scales of osteoarthritis of the tibiofemoral joint. AJR Am. J. Roentgenol., 187 (3), 794-799. DOI: https://doi.org/10.2214/AJR.05.1123

Marijnissen, A.C., Vincken, K.L., Vos, P.A., Saris, D.B., Viergever, M.A., Bijlsma, J.W., …, & Lafeber, F.P. (2008). Knee Images Digital Analysis (KIDA): a novel method to quantify individual radiographic features of knee osteoarthritis in detail. Osteoarthritis Cartilage, 16 (2), 234-243. DOI: https://doi.org/10.1016/j.joca.2007.06.009

Outerbridge, R.E. (2001). The etiology of chondromalacia patellae. 1961. Clin. Orthop. Relat. Res., 389, 5-8. DOI: https://doi.org/10.1097/00003086-200108000-00002

van den Borne, M.P., Raijmakers, N.J., Vanlauwe, J., Victor, J., de Jong, S.N., Bellemans, J., & Saris, D.B. (2007). International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in autologous chondrocyte implantation (ACI) and microfracture. Osteoarthritis Cartilage, 15 (12), 1397-1402. DOI: https://doi.org/10.1016/j.joca.2007.05.005

Toyras, J., Nieminen, H.J., Laasanen, M.S., Nieminen, M.T., Korhonen, R.K., Rieppo J, ..., & Jurvelin, J.S. (2002). Ultrasonic characterization of articular cartilage. Biorheology, 39 (1-2), 161-169.

Saarakkala, S., Korhonen, R.K., Laasanen, M.S., Toyras, J., Rieppo, J., & Jurvelin, J.S. (2004). Mechano-acoustic determination of Young’s modulus of articular cartilage. Biorheology, 41 (3-4), 167-179.

Toyras, J., Laasanen, M.S., Saarakkala, S., Lammi, M.J., Rieppo, J., Kurkijarvi, J., ..., & Jurvelin, J.S. (2003). Speed of sound in normal and degenerated bovine articular cartilage. Ultrasound Med. Biol., 29 (3), 447-454. DOI: https://doi.org/10.1016/S0301-5629(02)00708-1

Brown, C.P., Hughes, S.W., Crawford, R.W., & Oloyede, A. (2007). Ultrasound assessment of articular cartilage: analysis of the frequency profile of reflected signals from naturally and artificially degraded samples. Connect Tissue Res., 48 (6), 277-285. DOI: https://doi.org/10.1080/03008200701692354

Kaleva, E., Saarakkala, S., Toyras, J., Nieminen, H.J., & Jurvelin J.S. (2008). In-vitro comparison of time-domain, frequency-domain and wavelet ultrasound parameters in diagnostics of cartilage degeneration. Ultrasound Med. Biol., 34(1), 155-159. DOI: https://doi.org/10.1016/j.ultrasmedbio.2007.06.028

Xie, T., Guo, S., Zhang, J., Chen, Z., & Peavy, G.M. (2006). Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography. Lasers Surg. Med., 38 (9), 852-865. DOI: https://doi.org/10.1002/lsm.20394

Huser, C.A., & Davies, M.E. (2006). Validation of an in vitro single-impact load model of the initiation of osteoarthritis-like changes in articular cartilage. J. Orthop. Res., 24 (4), 725-732. DOI: https://doi.org/10.1002/jor.20111

Gold, G.E., Chen, C.A., Koo, S., Hargreaves, B.A., & Bangerter, N.K. (2009). Recent advances in MRI of articular cartilage. AJR Am. J. Roentgenol., 193 (3), 628-638. DOI: https://doi.org/10.2214/AJR.09.3042

Bauer, J.S., Krause, S.J., Ross, C.J., Krug, R., Carballido-Gamio, J., Ozhinsky, E., ..., & Link, T.M. (2006). Volumetric cartilage measurements of porcine knee at 1.5-T and 3.0-T MR imaging: evaluation of precision and accuracy. Radiology, 241 (2), 399-406.

Marlovits, S., Singer, P., Zeller, P., Mandl, I., Haller, J., & Trattnig, S. (2006). Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur. J. Radiol., 57 (1), 16-23. DOI: https://doi.org/10.1016/j.ejrad.2005.08.007

Liess, C., Lusse, S., Karger, N., Heller, M., & Gluer, C.C. Detection of changes in cartilage water content using MRI T2-mapping in vivo. Osteoarthritis Cartilage, 10 (12), 907-913. DOI: https://doi.org/10.1053/joca.2002.0847

Gray, M.L., Burstein, D., Kim, Y.J., & Maroudas, A. (2008). 2007 Elizabeth Winston Lanier Award Winner. Magnetic resonance imaging of cartilage glycosaminoglycan: basic principles, imaging technique, and clinical applications. J. Orthop. Res., 26 (3), 281-291.

Xia, Y., Zheng, S., & Bidthanapally, A. (2008). Depth-dependent profiles of glycosaminoglycans in articular cartilage by microMRI and histochemistry. J. Magn. Reson. Imaging, 28 (1), 151-157. DOI: https://doi.org/10.1002/jmri.21392

Wheaton, A.J., Dodge, G.R., Elliott, D.M., Nicoll, S.B., & Reddy, R. (2005). Quantification of cartilage biomechanical and biochemical properties via T1rho magnetic resonance imaging. Magn. Reson. Med., 54 (5), 1087-1093. DOI: https://doi.org/10.1002/mrm.20678

Borthakur, A., Mellon, E., Niyogi, S., Witschey, W., Kneeland, J.B., & Reddy, R. (2006). Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed., 19 (7), 781-821. DOI: https://doi.org/10.1002/nbm.1102

Shapiro, E.M., Borthakur, A., Gougoutas, A., & Reddy, R. (2002). 23Na MRI accurately measures fixed charge density in articular cartilage. Magn. Reson Med., 47 (2), 284-291. DOI: https://doi.org/10.1002/mrm.10054

Wheaton, A.J., Borthakur, A., Dodge, G.R., Kneeland, J.B., Schumacher, H.R., & Reddy, R. (2004). Sodium magnetic resonance imaging of proteoglycan depletion in an in vivo model of osteoarthritis. Acad. Radiol., 11 (1), 21-28. DOI: https://doi.org/10.1016/S1076-6332(03)00574-9

Lohmander, L.S. (1994). Articular cartilage and osteoarthrosis: the role of molecular markers to monitor breakdown, repair and disease. J. Anat., 184 (pt 3), 477-492.

Pruksakorn, D., Rojanasthien, S., Pothacharoen, P., Luevitoonvechkij, S., Wongtreratanachai, P., Ong-Chai, S., & Kongtawelert, P. (2009). Chondroitin sulfate epitope (WF6) and hyaluronic acid as serum markers of cartilage degeneration in patients following anterior cruciate ligament injury. J. Sci. Med. Sport, 12 (4), 445-448. DOI: https://doi.org/10.1016/j.jsams.2008.02.003

Cibere, J., Zhang, H., Garnero, P., Poole, A.R., Lobanok, T., Saxne T, ..., & Esdaile, J.M. (2009). Association of biomarkers with pre-radiographically defined and radiographically defined knee osteoarthritis in a population-based study. Arthritis Rheum., 60 (5), 1372-1380. DOI: https://doi.org/10.1002/art.24473

Schneider, U., Schlegel, U., Bauer, S., & Siebert, C.H. (2003). Molecular markers in the evaluation of autologous chondrocyte implantation. Arthroscopy, 19 (4), 397-403. DOI: https://doi.org/10.1053/jars.2003.50042

Wadhwa, S., & Kapila, S. (2008). TMJ disorders: Future innovations in diaagnostics and treatment. DOI: https://doi.org/10.1002/j.0022-0337.2008.72.8.tb04569.x

J. Dent. Educ., 72, 8, 930-947.

Imada, M., Tanimoto, K., Ohno, S., Sasaki, A., Sugiyama, H., & Tanne, K. (2003). Сhanges in urinary bone resorption markers (Pyridinoline, Deoxypyridinoline) resulting from experimentally-induced osteoartritis in the temporomandibular joint of rats. Cranio, 21, 1, 38-45. DOI: https://doi.org/10.1080/08869634.2003.11746230

Pohranychna, Kh., Matolych, U., & Stasyshyn, A. (2017). Early diagnostics of temporomandibular joint structural elements injuries caused by traumatic mandibular bone fractures. Polish Journal of Surgery, 89, 3, 31-35. DOI: https://doi.org/10.5604/01.3001.0010.1022

Scanzello, C.R., Umoh, E., Pessler, F., az-Torne, C., Miles, T., Dicarlo, E., ..., & Crow, M.K. (2009). Local cytokine profiles in knee osteoarthritis: elevated synovial fluid interleukin-15 differentiates early from end-stage disease. Osteoarthritis Cartilage, 17 (8), 1040-1048. DOI: https://doi.org/10.1016/j.joca.2009.02.011

Bekkers, J.E., Creemers, L.B., Dhert, W.J., & Saris, D.B.F. (2010). Diagnostic modalities for diseased articular cartilage. Cartilage, 1 (3), 157-164. DOI: https://doi.org/10.1177/1947603510364539

Tanimoto, K., Ohno, S., Imada, M., Honda, K., Ohno-Nakahara, M., Kapila, S., & Tanne, K. (2004). Utility of urinary pyridinoline and deoxypyridinoline ratio for diagnosis of osteoartritis at temporomandibular joint. Journal of Oral Pathology and Medicine, 33, 4, 218-223. DOI: https://doi.org/10.1111/j.0904-2512.2004.00097.x

Published

2020-07-01

How to Cite

Pohranychna, K. R., Ohonovskyi, R. Z., & Pasternak, Y. B. (2020). Comprehensive diagnosis of cartilage damage for temporomandibular joint traumatic diseases. CLINICAL DENTISTRY, (1), 24–33. https://doi.org/10.11603/2311-9624.2020.1.11218

Issue

Section

Surgical stomatology