TRANSFORMATIONAL POTENTIAL OF MEDICAL ARTIFICIAL INTELLIGENCE FOR HEALTHCARE AND PROFESSIONAL EDUCATION: TECHNOLOGICAL COMPONENTS

Authors

DOI:

https://doi.org/10.11603/mie.1996-1960.2024.3-4.15460

Keywords:

medical artificial intelligence, machine learning, deep learning, large multimodal models, natural language processing, computer vision, expert systems, intelligent robotics

Abstract

Background. Artificial intelligence (AI) is rapidly becoming a fundamental component of modern medicine, unlocking new opportunities for the diagnosis and treatment of patients. AI encompasses a broad range of methods, algorithms, and technologies aimed at creating computer systems capable of performing tasks traditionally requiring human intelligence. Medical AI, as a specialized subfield of AI, focuses on the application of AI technologies in healthcare. By analyzing large volumes of diverse data, uncovering hidden patterns, and generating accurate predictions, medical AI has the potential to fundamentally transform the healthcare paradigm, making it more precise, personalized, and efficient.
Materials and Methods. The research results were systematized using databases of scientific periodicals such as PubMed, Scopus, Web of Science, EMBASE, ERIC, IEEE Xplore, Semantic Scholar, ScienceDirect, and others. At various stages of the study, methods of bibliographic search, information structuring, and systematic analysis were employed.
Results. It is argued that the foundational technological components of medical artificial intelligence include machine learning (ML) and deep learning (DL) algorithms, large multimodal models (LMM), natural language processing (NLP), computer vision (CV), expert systems, and intelligent robotics.
These technologies enable the comprehensive analysis of diverse medical data, such as medical images, electronic health records (EHR), data from wearable devices and the Internet of Medical Things (IoMT), as well as genomic and proteomic information, to support clinical decision-making while incorporating evidence-based medical guidelines. The article thoroughly explores the foundations of ML and DL, providing a detailed description of their algorithms. It explains the concepts of generative AI and large multimodal models (LMM).
Conclusions. An essential task is to develop healthcare professionals’ competencies in utilizing medical AI, as a lack of understanding of its fundamental concepts and insufficient practical skills complicate its integration into clinical practice. The comprehensive analysis of modern medical AI technologies presented in this article not only enhances understanding of its potential but also outlines pathways for its implementation in clinical practice and professional education, laying the groundwork for further research.

References

Aldali, M. (2024). Artificial Intelligence Applications in Healthcare. AlQalam Journal of Medical and Applied Sciences, 597–605. doi: 10.54361/ajmas.247323. DOI: https://doi.org/10.54361/ajmas.247323

Zuhair, V., Babar, A., Ali, R., Oduoye, M., Noor, Z., Chris, K., Okon, I., Rehman, L. (2024).

Exploring the Impact of Artificial Intelligence on Global Health and Enhancing Healthcare in Developing Nations. Journal of Primary Care & Community Health, 15, 21501319241245847. doi: 10.1177/21501319241245847. DOI: https://doi.org/10.1177/21501319241245847

Kuwaiti, A., Nazer, K., Al-Reedy, A., Al-Shehri, S., Al-Muhanna, A., Subbarayalu, A., Muhanna, D., Al-Muhanna, F. (2023). A Review of the Role of Artificial Intelligence in Healthcare. Journal of Personalized Medicine, 13 (6), 13060951. doi: 10.3390/jpm13060951. DOI: https://doi.org/10.3390/jpm13060951

Martinez-Ortigosa, A., Martinez-Granados, A., Gil-Hernández, E., Rodriguez-Arrastia, M., Ropero- Padilla, C., Román, P. (2023). Applications of Artificial Intelligence in Nursing Care: A Systematic Review. Journal of Nursing Management, 1–12. doi: 10.1155/2023/3219127. DOI: https://doi.org/10.1155/2023/3219127

Wen, Z., Huang, H. (2022). The potential for artificial intelligence in healthcare. Journal of Commercial Biotechnology, 27 (4), 1327. doi: 10.5912/jcb1327. DOI: https://doi.org/10.5912/jcb1327

Poalelungi, D., Musat, C., Fulga, A., Neagu, M., Neagu, A., Piraianu, A., Fulga, I. (2023). Advancing Patient Care: How Artificial Intelligence Is Transforming Healthcare. Journal of Personalized Medicine, 13(8), 1214. doi: 10.3390/jpm13081214. DOI: https://doi.org/10.3390/jpm13081214

Bhattamisra, S., Banerjee, P., Gupta, P., Mayuren, J., Patra, S., Candasamy, M. (2023). Artificial Intelligence in Pharmaceutical and Healthcare Research. Big Data and Cognitive Computing, 7(10), 7010010. doi: 10.3390/bdcc7010010. DOI: https://doi.org/10.3390/bdcc7010010

Mintser, O. P., Sulaieva, O., Dudin, O. (2021). Shtuchnyi intelekt ta patolohiia nastupnoho pokolinnia: shliakh do personalizovanoi medytsyny [Artificial Intelligence and Next-Generation Pathology: The Road to Personalized Medicine]. Proceedings of the Shevchenko Scientific Society. Medical Sciences, 65, 2, 68–87. [In Ukrainian].

Mintser, O., Babintseva, L., Mokhnachov, S., Sukhanova, O. (2023). Systemna biomedytsyna yak osnova personalizovanoi ta pretsyziinoi medytsyny [Systemic Biomedicine as the Foundation of Personalized and Precision Medicine]. Medychna informatyka ta inzheneriia, (1-2), 92–97. doi: 10.11603/mie.1996-1960.2023.1-2.13963. [In Ukrainian]. DOI: https://doi.org/10.11603/mie.1996-1960.2023.1-2.13963

Liu, R., Rong, Y., Peng, Z. (2020). A review of medical artificial intelligence. Global Health Journal, 4, No 2, 42–45. doi: 10.1016/j.glohj.2020.04.002. DOI: https://doi.org/10.1016/j.glohj.2020.04.002

Gou, F., Liu, J., Xiao, C., Wu, J. (2024). Research on Artificial-Intelligence-Assisted Medicine: A Survey on Medical Artificial Intelligence. Diagnostics (Basel, Switzerland), 14, 1472. doi: 10.3390/diagnostics14141472. DOI: https://doi.org/10.3390/diagnostics14141472

Mao, W., Qiu, X., Abbasi, A. (2024). LLMs and Their Applications in Medical Artificial Intelligence. ACM Transactions on Management Information Systems, 15, No 4, 111. doi: 10.1145/371183.

Wong, I. N., Monteiro, O., Baptista-Hon, D. T. et al. (2024). Leveraging foundation and large language models in medical artificial intelligence. Chinese Medical Journal, 137(21), 2529–2539. DOI: https://doi.org/10.1097/CM9.0000000000003302

Karaca, O., Çalışkan, S.A. Demir, K. (2021). Medical artificial intelligence readiness scale for medical students (MAIRS-MS) – development, validity and reliability study. BMC Medical Education, 21(1), 112. doi: 10.1186/s12909-021-02546-6. DOI: https://doi.org/10.1186/s12909-021-02546-6

Khosravi, M., Zare, Z., Mojtabaeian, S., Izadi, R. (2024). Artificial Intelligence and Decision- Making in Healthcare: A Thematic Analysis of a Systematic Review of Reviews. Health Services Research and Managerial Epidemiology, 11, 1–15. doi: 10.1177/23333928241234863. DOI: https://doi.org/10.1177/23333928241234863

García-Vidal, C., Sanjuán, G., Puerta-Alcalde, P., Moreno-García, E., Soriano, А. (2019). Artificial intelligence to support clinical decision-making processes. EBioMedicine, 46, 27–29. doi: 10.1016/j.ebiom.2019.07.019. DOI: https://doi.org/10.1016/j.ebiom.2019.07.019

Hak, F., Guimarães, T., Santos, M. (2022). Towards effective clinical decision support systems: A systematic review. PLoS ONE, 17(8), 1–19. doi: 10.1371/journal.pone.0272846. DOI: https://doi.org/10.1371/journal.pone.0272846

Cadario, R., Longoni, C., Morewedge, C. (2021). Understanding, explaining, and utilizing medical artificial intelligence. Nature Human Behaviour, 5, 1636–1642. doi: 10.1038/s41562-021-01146-0. DOI: https://doi.org/10.1038/s41562-021-01146-0

Wu, C., Xu, H., Bai, D., Chen, X., Gao, J., Jiang, X. (2022). Public perceptions on the application of artificial intelligence in healthcare: a qualitative meta-synthesis. BMJ Open, 13, 1–14. doi: 10.1136/bmjopen-2022-066322. DOI: https://doi.org/10.1136/bmjopen-2022-066322

Li, W., Zhou, X., Yang, Q. (2021). Designing medical artificial intelligence for in- and out-groups.

Computers in Human Behavior, 124, 106929. doi: 10.1016/j.chb.2021.106929. DOI: https://doi.org/10.1016/j.chb.2021.106929

Tang, L., Li, J., Fantus, S. (2023). Medical artificial intelligence ethics: A systematic review of empirical studies. Digital Health, 9, 20552076231186064. doi: 10.1177/20552076231186064. DOI: https://doi.org/10.1177/20552076231186064

Amann, J., Vayena, E., Ormond, K., Frey, D., Madai, V., Blasimme, A. (2023). Expectations and attitudes towards medical artificial intelligence: A qualitative study in the field of stroke. PLOS ONE, 18(1), e0279088. doi: 10.1371/journal.pone.0279088. DOI: https://doi.org/10.1371/journal.pone.0279088

(2024). Ethics and governance of artificial intelligence for health: Guidance on large multi- modal models. World Health Organization. Available from: https://www.who.int/publications/i/item/9789240084759.

Mintser, O. P., Lukianov, Ye. Yu. (2024). Vykorystannia shtuchnoho intelektu na osnovi pryntsypiv samokontroliu ta perekhresnoho kontroliu rishen, shcho pryimaiutsia v biolohii ta medytsyni [The Use of Artificial Intelligence Based on Principles of Self-Monitoring and Cross-Verification of Decisions in Biology and Medicine]. Systemy ta zasoby shtuchnoho intelektu: tezy dopovidei Mizhnarodnoi naukovoi konferentsii «Shtuchnyi intelekt: dosiahnennia, vyklyky ta ryzyky», 269–310. [In Ukrainian].

(2024). Ramka tsyfrovoi kompetentnosti pratsivnyka okhorony zdorovia Ukrainy. Ministerstvo okhorony zdorovia Ukrainy [The Digital Competence Framework for Healthcare Workers in Ukraine]. Ministerstvo okhorony zdorovia Ukrainy. Available from: http://surl.li/mifthj. [In Ukrainian].

Chalyy, K.O., Kryvenko, I.P. (2024). Metodychni rekomendatsii do praktychnykh zaniat z medychnoi informatyky, rozrobleni za hrantovoiu prohramoiu proiektu USAID «Pidtrymka reformy okhorony zdorovia» z rozvytku tsyfrovykh kompetentnostei pratsivnykiv okhorony zdorovia ta zdobuvachiv medychnoi ta farmatsevtychnoi osvity, vykonanoi v ramkakh kontraktu No72012118C00001 [Methodological recommendations for practical classes in medical informatics, Developed Under the Grant Program of the USAID Project «Health Reform Support» for the Development of Digital Competencies of Healthcare Workers and Students of Medical and Pharmaceutical Education, Implemented Under Contract No. 72012118C00001]. Bogomolets National Medical University. 269–310. Available from: https://drive.google.com/file/d/15gLoSCZYaetx2--6OQP9Mr1kIR1YhYJm/view. [In Ukrainian].

Kryvenko, I., Hrynzovskyi, A., Chalyy, K. (2023). The internet of medical things in the patient- centered digital clinic’s ecosystem. Lecture Notes on Data Engineering and Communications Technologies. Springer, 178. 515–529. doi: 10.1007/978-3-031-35467-0_31. DOI: https://doi.org/10.1007/978-3-031-35467-0_31

Kryvenko, I., Chalyy, K. (2023). Phenomenological toolkit of the metaverse for medical informatics’ adaptive learning. Educación Médica, 24(5), 100854. doi: 10.1016/j.edumed.2023.100854. DOI: https://doi.org/10.1016/j.edumed.2023.100854

Published

2025-08-12

How to Cite

Chalyy, K. O., & I. P. Kryvenko, I. P. (2025). TRANSFORMATIONAL POTENTIAL OF MEDICAL ARTIFICIAL INTELLIGENCE FOR HEALTHCARE AND PROFESSIONAL EDUCATION: TECHNOLOGICAL COMPONENTS. Medical Informatics and Engineering, (3-4), 51–66. https://doi.org/10.11603/mie.1996-1960.2024.3-4.15460

Issue

Section

Articles