ОПТИЧНІ БІОСЕНСОРИ НА ОСНОВІ ГІБРИДНИХ НАНОСТРУКТУР І МЕТАМАТЕРІАЛІВ

Автор(и)

  • К. В. Костюкевич Інститут фізики напівпровідників імені В. Є. Лашкарьова НАН України
  • Є. А. Крючина Київска міська клінічна лікарня № 10
  • А. А. Крючин Інститут проблем реєстрації інформації НАН України
  • С. О. Костюкевич Інститут фізики напівпровідників імені В. Є. Лашкарьова НАН України

DOI:

https://doi.org/10.11603/mie.1996-1960.2021.2.12450

Ключові слова:

поверхневий плазмонний резонанс, поверхнево-посилене комбінаційне розсіювання, багатоша-рові плівки, наночастинки, гібридні та метаматеріали, рельєфні наноструктури

Анотація

Роботу присвячено дослідженню методів удосконалення оптичних біосенсорних приладів на основі поверхневого плазмонного резонансу та поверхнево-посиленому комбінаційному розсіюванні (SERS) при застосуванні гібридних наноструктур і метаматеріалів. Розглянуто схеми використання гібридних магнітно-плазмонних наночастинок, біметалевих і діелектричних багатошарових плівок, дифракційних структур, CD дисків і Фано-резонансних метаматеріалів.

Посилання

Dey, D., Goswami, T. (2011). Optical biosensors: A revolution towards quantum nanoscale electronics device fabrication. Journal of Biomedicine and Biotechnology, Article ID 348218. doi: 10.1155/2011/348218.

Naresh, V., Lee, N. (2021). A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors (Basel), 1 (4):1109. doi: 10.3390/s21041109.

Tewari, A., Jain, B., Brar, B., Prasad, G., Prasad, M. (2020). Biosensors: Modern Tools for Disease Diagnosis and Animal Health Monitoring. Biosensors in Agriculture: Recent Trends and Future Perspectives, 387-414. doi:10.1007/978-3-030-66165-6_18.

Luchansky, M. S., Bailey, R. C. (2012). High-Q optical sensors for chemical and biological analysis. Anal Chem., 84 (2), 793-821. doi: 10.1021/ac2029024.

Estevez, M. C., Alvarez, M., Lechuga, L. M. (2011). Integrated optical devices for lab-on-a-chip biosensing applications. Laser & Photonics Reviews, 6 (4), 463487. doi:10.1002/lpor.201100025.

Kostyukevych, K. V., Khristosenko, R. V., Zagorodnya, S. D., Kostyukevych, S. O., Koptyukh, A. A., Kryuchyn, A. A., Oleksenko, P. F. (2020). Molecular diagnostics based on angular spectroscopy of surface plasmons. Data recording, storage and processing, 22 (3), 14-30. doi.org/10.35681/1560-9189.2020.22.3.218824. [In Ukraian].

Mamichev, D. A., Kuznetsov, I. A., Maslova, N. E., Zanaveskin, M. L. (2012). Optical sensors based on surface plasmon resonance for highly sensitive biochemical analysis. Molecular Medicine, 6, 19-27. [ In Russian].

Holzinger, M., Le Goff, A., Cosnier, S. (2014). Nano-materials for biosensing applications: a review. Front. Chem. 2:63. doi: 10.3389/fchem.2014.00063.

Stebunov, Y., Arsenin, A. (2016). New perspectives for pharmacology - biosensors based on graphene oxide. Analytics, 1. [In Russian].

Koh, I., Josephson, L. (2009). Magnetic Nanoparticle Sensors. Sensors, 9 (10), 8130-8145. doi.org/10.3390/ s91008130.

Stebunov, Y. V., Afteneva, O. A., Arsenin, A. V., Volkov, V. S. (2015). Highly sensitive and selective sensor chips with graphene-oxide linking layer. ACS Applied Materials & Interfaces, 7 (39), 21727-21734. doi: 10.1021/ acsami.5b04427.

Tabasi, O., Falamaki, C. (2018). Recent advancements in the methodologies applied for the sensitivity enhancement of surface plasmon resonance sensors. Analytical Methods, 32, 3899-4008. doi: 10.1039/ c8ay00948a.

Abbas, A., Linman, M. J., Cheng, Q. (2011). New trends in instrumental design for surface plasmon resonance-based biosensors. Biosensors and Bioelectronics 26 (5), 1815-1824. doi.org/10.1016/j.bios.2010.09.030.

Kurgan, N. A., Karbovskaya, L. I., Karbovsky, V. L. (2019). Functional sensory nanostructures (overview). Nanosistemi, Nanomateriali, Nanotehnologii, 17 (1), 167-206. [In Russian].

Ivanov, A. S. (2012). Investigation of intermolecular interactions using optical biosensors operating on the effect of surface plasmon resonance. Modern technologies in medicine, 4, 142-153. [In Russian].

Handbook of Surface Plasmon Resonance (2008) / Edited by R. B. M. Schasfoort, A. J. Tudos. Cambridge (UK): Royal Society of Chemistry. doi. org/10.1039/9781847558220.

Mitchell, J. (2010). Small molecule immunosensing using surface plasmon resonance. Sensors, 10, 73237346. doi.org/10.3390/s100807323.

Puiu, M., Bala, C. (2016). SPR and SPR imaging: recent trends in developing nanodevices for detection and real-time monitoring of biomolecular events. Sensors, 16, 870-884. doi.org/10.3390/s16060870.

Singh, P. (2016). Biosensors: historical perspectives and current challenges. Sensors and Actuators B, 229, 110-130. doi.org/10.1016/j.snb.2016.01.118.

Beketov, G. V., Klimov, O. S., Matyash, I. E., Obe-remok, E. A. et al. (2013). Physical bases of polarimetry of high informative ability / Edited by B. K. Hearts. Kyiv: NTUU "KPI" VP VPK "Polytechnic". ISBN 978-966-622-608-5.

Shirshov, Y. M., Chegel, V. I., Subota, Y. V., Matsas, E. P. Et al. (1995). Biosensors based on SPR and optimization of their working parameters. Proc. of SPIE, 2780, 257-260. doi.org/10.1117/12.238166.

Khrystosenko, R. V. (2015). Optimization of the surface plasmon resonance minimum detection algorithm for improvement of method sensitivity. Semiconductor

Physics, Quantum Electronics and Optoelectronics, 18 (3), 279-285.

Kostyukevich, S. O., Koptyukh, A. A., Kostyuke-vich, K. V., Lisyuk, V.O. et al. (2019). Adequate sensors with a prism type stimulate surface plasmon resonance on a polymeric basis. Data recording, storage and processing, 21 (3), 3-19. [In Ukraian].

Kostioukevich, S. A., Shirshov, Y. M., Matsas, E. P., Chegel, V. I. Et al. (1995). Application of surface plasmon resonance for the investigation of ultra-thin metal films. Proc. of SPIE, 2648, 144-151. doi. org/10.1117/12.226156.

Kostyukevich, S. O., Khristosenko, R. V., Kostyukevich, K. V. et al. (2018). Molecular analysis of thin films of different nature based on surface plasmon spectroscopy. Data recording, storage and processing, 20 (4), 5-20. [In Ukraian].

Kostyukevich, K. V., Shirshov, Yu. M., Khristosenko, R. V. Et al. (2018). Features of the angular spectrum of surface plasmon-polariton resonance in the Kretschman geometry in the study of latex aqueous suspension. Optoelectronics and semiconductor technology, 53, 220-239. [In Russian].

Kostyukevych, K. V., Khristosenko, R. V., Pavluchen-ko, A. S. et al. (2016). A nanostructural model of ethanol adsorption in thin calixarene films. Sensors and Actuators B, 223, 470-480. doi.org/10.1016%2Fj. snb.2015.09.123.

Kostyukevych, K. V., Khristosenko, R. V., Shirshov, Yu. M. et al. (2011). Multi-element gas sensor based on surface plasmon resonance: recognition of alcohols by using calixarene films. Semiconductor Physics, Quantum Electronics and Optoelectronics, 14 (3), 313-320.

Khrystosenko, R. V. (2016). Optimization of surface plasmon resonance based biosensor for clinical diagnosis of the Epstein-Barr herpes virus disease. Semiconductor Physics, Quantum Electronics and Optoelectronics, 19 (1), 84-89. dx.doi.org/10.15407/ spqeo19.01.084.

Kostyukevych, K. V., Snopok, B. A., Shirshov, Yu. M. et al. (1998). New opto-electronic system based on the surface plasmon resonance phenomenon: application to the concentration determination of DD-fragment of fibrinogen. Proc. of SPIE, 3414, 290-301. doi: 10.1117/12.323542.

Kostyukevych, S. O., Kostyukevych, K. V., Khristosenko, R. V. et al. (2017). Multielement surface plasmon resonance immunosensor for monitoring of blood circulation system. Optical Engineering. 56 (12). 121907. doi:10.1117/1.OE.56.12.121907.

Voros J. (2004). The density and refractive index of adsorbing protein layers. Biophysical Journal, 87, 553561. doi.org/10.1529/biophysj.103.030072.

Piliarik, M., Homola, J. (2009). Surface plasmon resonance (SPR) sensors: approaching their limits? Opt. Express, 17 (19), 16505-16517. doi.org/10.1364/ OE.17.016505.

Linman, M. J., Abbas, A., Cheng, Q. (2010). Interface design and multiplexed analysis with surface plasmon resonance (SPR) spectroscopy and SPR imaging. Analyst, 135, 2759-2767. doi.org/10.1039/c0an00466a.

Starodub, N. F., Dibrova, T. L., Shirshov, Yu. M., Kostyukevych, K. V. (1999). Development of the myoglobin sensor based on the surface plasmon resonance. Ukrainskyi Biokhimichnyi Zhurnal, 71 (2), 33-37.

Takano, T. (1977). Structure of deoxymyoglobin from sperm whale. Journal of Molecular Biology,110 (3), 569-584. doi.org/10.1016/s0022-2836(77)80112-5.

Rachkov, A. E., Bakhmachuk, A. O., Gorbatiuk, O. B. et al. (2015). SPR investigations of the formation of intermediate layer of the immunosensor bioselective element based on the recombinant Staphylococcal protein A. Biopolymers and Cell, 31 (4), 301-308. doi. org/10.7124/bc.0008EF.

Bakhmachuk, A., Gorbatiuk, O., Rachkov, A. et al. (2017). Surface Plasmon Resonance Investigations of Bioselective Element Based on the Recombinant Protein A for Immunoglobulin Detection. Nanoscale Res Lett, 12, Article number: 112. doi.org/10.1186%2 Fs11671-017-1903-5.

Homola, J. (2008). Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev., 108 (2), 462-493. doi.org/10.1021/ cr068107d.

Kostyukevych, K. V. (2016). Transducer based on surface plasmon resonance with thermal modification of metal layer properties. Semiconductor Physics, Quantum Electronics and Optoelectronics, 199 (3), 255-266. doi:10.15407/spqeo19.03.255.

Lysenko, S. I., Snopok, B. A., Sterligov, V. A. et al. (2001). Light scattering by molecular-organized films on the surface of polycrystalline gold. Optics and Spectroscopy, 90 (4), 606-616. doi.org/10.1134/1.1366757.

Kostyukevich, S. O., Kostyukevich, K. V. (2013). Bagatolement re-transformation based on surface plasmon resonance in disk format. UA 103662 C2. IPC (2006.01): G01N 21/55, G01N 21/27, G01N 21/25. No. a201111725, Appl. 04.10.2011; Publ. 11.11.2013, Bul. No. 21.

Kwizera, E. A., Chaffin, E., Wang, Y., Huang, X. (2017). Synthesis and properties of magnetic-optical core-shell nanoparticles. RSC Advances., 7 (28), 17137-17153. doi:10.1039/c7ra01224a.

Pershina, A. G., Sazonov, A. E., Milto, I. V. (2008). The use of magnetic nanoparticles in biomedicine. Bulletin of Siberian Medicine, 7 (2), 70-78. doi. org/10.20538/1682-0363-2008-2-70-78. [In Russian].

Brullot, W., Valev, V. K., Verbiest, T. (2012). Mag-netic-plasmonic nanoparticles for the life sciences: calculated optical properties of hybrid structures. Nano-medicine: Nanotechnology, Biology and Medicine, 8 (5), 559-568. doi:10.1016/j.nano.2011.09.004.

Turanskaya, S. P., Chetyrkin, A. D., Dubrovin, I. V. et al. (2011). Synthesis, properties and application in experimental medicine and biology of magnetosensitive nanocomposites containing noble metals. Surface, 3, 343-366.

Barrios, C. A., Canalejas-Tejero, V., Herranz, S. (2014). Aluminum Nanohole Arrays Fabricated on Polycarbonate for Compact Disc-Based Label-Free Optical Biosensing. Plasmonics, 9, 645-649. doi.org/10.1007/ s11468-014-9676-5.

Baikova, T. V., Danilov, P. A., Gonchukov, S. A. et al. (2016). Diffraction microgratings as a novel optical biosensing platform. Laser Physics Letters, 13 (7), 075602. doi:10.1088/1612-2011/13/7/075602.

Kubo, I., Furutani, S. (2019). Compact disc-type biosensor devices and their applications. Chemical, Gas, and Biosensors for Internet of Things and Related Applications, 223-235. doi:10.1016/b978-0-12-815409-0.00016-4.

Chou, S.-Y., Meng, W.-Y., Chiu, K.-C., Lin, C.-M. et al. (2009). Surface plasmon resonance biosensor based on compact discs. IEEE 3rd International Conference on Nano/Molecular Medicine and Engineering, 231-234. doi:10.1109/nanomed.2009.5559081.

Hwu, E. E.-T., Boisen, A. (2018). Hacking CD/DVD/ Blu-ray for Biosensing. ACS Sensors, 3 (7), 1222-1232. doi:10.1021/acssensors.8b00340.

Morais, S., Tortajada-Genaro, L., Maquieira, A. (2014). Array-on-a-disk? How Blu-ray technology can be applied to molecular diagnostics. Expert Review of Molecular Diagnostics, 14 (7), 773-775. doi:10.1586/ 14737159.2014.929945.

Baburin, A. S., Kalmykov, A. S., Kirtaev, R. V. et al. (2018). Toward a theoretically limited SPP propagation length above two hundred microns on an ultra-smooth silver surface [Invited]. Optical Materials Express, 8 (11), 3254-3261. doi.org/10.1364/OME.8.003254.

Khanikaev, A. B., Wu, C., Shvets, G. (2013). Fano-res-onant metamaterials and their applications. Nanopho-tonics, 2 (4). doi:10.1515/nanoph-2013-0009.

Luk'yanchuk, B., Zheludev, N. I., Maier, S. A. et al. (2010). The Fano resonance in plasmonic nanostruc-tures and metamaterials. Nature Materials, 9 (9), 707715. doi:10.1038/nmat2810.

Jung, Y., Hwang, I., Yu, J. (2019). Fano Metamaterials on Nanopedestals for Plasmon-Enhanced Infrared Spectroscopy. Sci Rep., 9, Article number: 7834. doi. org/10.1038/s41598-019-44396-901.

Ghorbanpour, M., Falamaki, C. (2013). A novel method for the production of highly adherent Au layers on glass substrates used in surface plasmon resonance analysis: substitution of Cr or Ti intermediate layers with Ag layer followed by an optimal annealing treatment. Journal of Nanostructure in Chemistry, 3, 66-73.

##submission.downloads##

Опубліковано

2021-11-29

Як цитувати

Костюкевич, К. В., Крючина, Є. А. ., Крючин, А. А., & Костюкевич, С. О. (2021). ОПТИЧНІ БІОСЕНСОРИ НА ОСНОВІ ГІБРИДНИХ НАНОСТРУКТУР І МЕТАМАТЕРІАЛІВ. Медична інформатика та інженерія, (2), 14–33. https://doi.org/10.11603/mie.1996-1960.2021.2.12450

Номер

Розділ

Статті