СИСТЕМНІ МЕХАНІЗМИ ФОТОРЕГУЛЯЦІЇ ОСЦИЛЯТОРНИХ МЕРЕЖ КЛІТИННОГО МЕТАБОЛІЗМУ ТА ЗДОРОВ'Я ЛЮДИНИ

Автор(и)

  • О. П. Мінцер Національна медична академія післядипломної освіти імені П. Л. Шупика
  • В. М. Заліський Національна медична академія післядипломної освіти імені П. Л. Шупика
  • Л. Ю. Бабінцева Національна медична академія післядипломної освіти імені П. Л. Шупика

DOI:

https://doi.org/10.11603/mie.1996-1960.2019.4.11015

Ключові слова:

осциляторні мережі клітинного метаболізму, шипова нейронна мережа, концептуалізація, циркадний годинник супрахіазматичних ядер, екстраретинальна фоторецепція

Анотація

Дослідження присвячено розумінню фізіологічного походження осциляції та функціональної ролі таких коливань. Відповідно за мету дослідження визначено концептуалізацію ролі коливальних сигналів у різних частотних діапазонах станів мережі. Відмічено, що циркадний годинник є біологічним осцилятором, що присутній у всіх фоточутливих видах істот. Він здатний здійснювати 24-годинний цикл транскрипції ферментів метаболізму світло-темнової періодичності; залишається невирішеним головне питання: яким чином центральні циркадні програми транскрипції ферментів метаболізму інтегровано у фізіологічні відповіді окремих нейронів і як ансамблі периферичних циркадних осциляторів вирівнюють часові гармоніки взаємодії організму з навколишнім середовищем; положення регульованих світлом мережевих нейронних осциляторів у контурі SCN і пов'язаний із ним баланс синаптичного входу можуть змінювати мембранний потенціал, рівень Ca2+ і цАМФ або інші сигнали, визначаючи тим самим регіон-специфічні варіанти «ритмічних» фенотипів, що спостерігаються в природних (in vitro) умовах; накопичені знання про тонкі механізми, за допомогою яких SCN та інші відділи мозку адаптуються до фотоперіодичних сезонних змін, залишаються неповними. Поряд із традиційними формами нейропластичності (формування нових міжнейронних зв'язків, зміна синаптичної стабільності та кількості синапсів) великого значення набувають механізми фазових нейромедіаторних перемикань між циркадними клітинними осциляторами в SCN і в інших областях (гіпоталамус, гіпокамп) мозку. Отже, подальші дослідження можуть розкрити особливості того, як взаємодія цих форм пластичності нейронів (опосередкована сезонними змінами) бере участь у поведінкових і фізіологічних реакціях фоторегуляції осциляторних мереж, оптимізуючи розвиток програм хронотерапії — як структурного елемента системної біомедицини.

Посилання

Zemskova, Yu. A. (2014). Biorytmy ta hodyny roboty vnutrishnikh orhaniv. [Biorhythms and working hours of internal organs.] Nauka i suchasnist, 27, 31-35. [In Ukrainian].

Pidkolodnyi, N. L., Tverdokhlib, N. N., Pidkolodna, N. (2017). Analiz tsyirkadnoho rytmu biolohichnykh protsesiv v pechintsi i nyrkakh myshei. [Analysis of the circadian rhythm of biological processes in the liver and kidneys of mice.] Vavylovskyi zhurnal henet. i selektsii. 21 (В), 903-910. [In Ukrainian].

Soloviov, N. A., Dobrovolska, E. V., Moskalov, A. A. (2016). Henetychnyi kontrol tsyrkadnykh rytmiv i starinnia. [Genetic control of circadian rhythms and aging.] Henetyka. 52 (4), 343-361. [In Ukrainian].

Albus, H., Vansternsel, M. J., Michel, S., et al. (2005). GABAerjic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Curr. Biol., 15, 886-893. DOI: https://doi.org/10.1016/j.cub.2005.03.051

Asgri-Targhi A., Klerman E. B. (2018). Mathematical modeling of circadian rhythms. Wiley Interdisqipl. Rev. Syst. Biol., 17, 1439.

Aton, S. J., Herzog, E. D. (2005). Come together, right now: synchronization of rhythms in a mammalian circadian clock. Neurol., 4В, 531-34. DOI: https://doi.org/10.1016/j.neuron.2005.11.001

Aton, S. J., Colwell, C. S., Harmar, A. J., et al. (2005). VIP mediated circadian rhythmicity and synchrony in mammalian clock neurons. Nat. Neurosci., В, 476-83. DOI: https://doi.org/10.1038/nn1419

Ball, L. J., Palesh, O., Kricgsfeld, L. I. (2016). The pathophysiological role of disrupted circadian and neuroendocrine rhythms in breast carcinogenesis. Endocrinol Rev., 37 (5), 450-66. DOI: https://doi.org/10.1210/er.2015-1133

Bapary, M. A. J. (2011). The .stimulatory effects of long wavelengths of light on the ovarian dev,lopment in the tropical damselfish chrisiptera cyanea. Aquaculture, 314, 188-92. DOI: https://doi.org/10.1016/j.aquaculture.2011.02.006

Barnes, A. K., Smith, S. B., Datta, S. (2017). Beyond emotional and spatial processes: cognitive dysfunction in a depressive phenotype produced by long photoperiod exposure. PLoS One, 12 (1), e0170032. DOI: https://doi.org/10.1371/journal.pone.0170032

Bass, J. (2016). Circadian mechanisms in bioenergetics and cell metabolism. In Book: Sassone-Corsi P., Christen Y. (Eds.). A Time For Metabolism And Hormones. Chan (Ch): Springer.

Bernard, S., Gonze, D., Cajavec B., et al. (2007). Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus. PLoS Comput. Biol., 3, 68. DOI: https://doi.org/10.1371/journal.pcbi.0030068

Bolliet, V. (2001). Demand-feeding rhythm in rainbow trout and European catfish. synchronisation by photoperiod and food availability. Physiol. Behav., 73, 625-33. DOI: https://doi.org/10.1016/S0031-9384(01)00505-4

Bonmati-Carrion, M. A., Arguelles-Prieto, R., Martinez-Madrid, M. J. (2014). Protecting the melatonin rhythm through circadian healthy light exposure. Int. J. Mol. Sci., 15 (12), 23448-500. DOI: https://doi.org/10.3390/ijms151223448

Bordyugov, G., Westermark, P. O., Koreneic, A., et al. (2013). Mathematical modeling in chronobiology. Handb Exp. Pharmacol., 217, 335-7. DOI: https://doi.org/10.1007/978-3-642-25950-0_14

Brown, S. A., Zumbrunn, G., Flenry-Olela, F., et al. (2002). Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr. Biol., 12, 1574-83. DOI: https://doi.org/10.1016/S0960-9822(02)01145-4

Chanrasia, S. S., Rollag, M. D., Jiang, G., et al. (2005). Molecular cloning, localization and circadian expression of chicken melanopsin (OPN4): differential regulation of expression in pineal and retinal cell types. J Neurochem., 92 (1). 158-70.

Ciarleglio, C. M., Gamble, K. L., Axley, J. C., et al. (2009). Population encoding by circadian clock neurons organized. J. Neurosei, 29 (6), 1670-76.

Coomans, C. P., Ramkinsoensing, A., Meijer, J. H. (2015). The suprachiasmatic nuclei as a seasonal clock. Front. In Neuroendocr., 37, 29-42. DOI: https://doi.org/10.1016/j.yfrne.2014.11.002

Cribbet, M. R., Logan, R. W., Edwards M. D., et al. (2016). Circadian rhythm and metabolism: from the brain to the gut and back again. Ann. N.-Y. Acad. Sci. USA, 1385 (1), 21-40. DOI: https://doi.org/10.1111/nyas.13188

Currie, S. P., Doherty, G. H., Sillar, K. T. (2016). Deep-brain photoreception links luminance detection to motor output in Xenopus frog tadpoles. Proc. Natl. Acad. Sci. USA, 113, 6053-58. DOI: https://doi.org/10.1073/pnas.1515516113

Carcia-Fernandez, J. M., Cernuda, C. R., Davies, W. L., et al. (2015). The hypothalamic photoreceptors regulating seasonal reproduction. Frontiers in Neuroendocrinol., 37, 13-28. DOI: https://doi.org/10.1016/j.yfrne.2014.11.001

Damiola, F., Le Minh, N., Preitner, N., et al. (2000). Restricted ferding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev., 14 (23), 2950-2961. DOI: https://doi.org/10.1101/gad.183500

Dawson, A. (2002). Photoperiodic control of the annual cycle in birds and comparison with mammalis. Ardea., 90, 355-67.

De Jen, M., Hermes, N., Pennartz, C. (1998). Circadian modulation of membrane properties in slices of rat suprachiasmatic nucleus. Neuroreport., 9, З725-29.

Dellapolla, A. K., Kloehn, I., Pancholi, H., et al. (2017). Long days enhance recognition memory and increase insulin-like growth factor 2 in the hippocampus. Scientific Rep., 7 (1), З925. DOI: https://doi.org/10.1038/s41598-017-03896-2

De Maria, E., Fages, F., Kirk, A., et al. (2011). Design, optimization and predictions of a coupled model of the cell cycle, circadian clock. Theor. Comput. Sci., 412, 2108-27. DOI: https://doi.org/10.1016/j.tcs.2010.10.036

Denrvelher, S., Semba, K. (2005). Indirect projecting from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience, 130 (1), 165-8З.

Doi, M., Hirayama, J., Sassone-Corsi, P. (2006). Circadian regulator CLOCK is a histone acetyltransferase. Cell, 125 (3), 497-508. DOI: https://doi.org/10.1016/j.cell.2006.03.033

Einat, H., Kronfeldschor, N., Eilam, D. (2006). Sand rats see the light: short photoperiod induces a depression-like response in a diurnal rodent. Behavioral. Brain Res., 173 (1), 15З-7. DOI: https://doi.org/10.1016/j.bbr.2006.06.006

Evans, J. A., Leiso, T. L., Castanon-Cervantes, O., et al. (201З). Dynamic interactions mediated by nonreductant signaling mechanisms couple circadian clock neurons. Neuron., 80 (4), 97З-98З. DOI: https://doi.org/10.1016/j.neuron.2013.08.022

Evans, J. A. (2016). Collective time keeping among cell of the master circadian clock. J. of Endocrinology, 230 (1), 27-49.

Fernandes, A. M., Fero, K., Arrenberg, A. B., et al. (2012). Deep brain photoreceptors control light— seeking behavior in zebrafish larvae. Curr. Biol., 22, 2042-47. DOI: https://doi.org/10.1016/j.cub.2012.08.016

Figueiro, M. G., Rea, M. S. (2010). The effects of red and blue lights on circadian variations in cortisol, alpha amylase, and melatonin. Intern. J. of Endocrinol., 9. DOI: https://doi.org/10.1155/2010/829351

Foa, A. (199З). The role of external photoreception in the circadian system of the ruin lizard podarcis sicula. Comp. Biochem. Physiol. A Physiol., 105, 22З-З0.

Forger, D. B., Peskin, C. S. (200З). A deiled predictive models of the mammalian circadian clock. Proc. Natl. Acad. Sci. USA, 100, 14806-811. DOI: https://doi.org/10.1073/pnas.2036281100

Galhon, F., Nagoshi, E., Brown, S. A., et al. (2004). The mammalian circadian timing system. Chromosoma, 113, 10З-12.

Gallego, M., Virshup, D. M. (2007). Review post— translational modifications regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell. Biol., 8 (2), 1З9-42.

Girardet, C., Becquet, D., Blanchard, M. P., et al. (2010). Neuroglial and synaptic rearrangements associated with photic entrainment of the circadian clock in the suprachiasmatic nucleas. European J. of Neuroscience, 32 (12), 21ЗЗ-42.

Girardet, C., Blanchard, M. P., Ferracci, G., et al. (2010). Daily changes in synaptic innervation of VIP

neurons in the rat suprachiasmatic nucleus: contribution of glutamatergic afferents. Eur J Neuroscience, 31 (2), З59-70.

Goldman, B. D. (2001). Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement. J. Biol. Rhythms., 28З-З01. DOI: https://doi.org/10.1177/074873001129001980

Gonze, D., Bernard, S., Waltermann, C., et al. (2005). Spontaneous synchronization of coupled circadian oscillators. Biophys. J., 89, 120-29. DOI: https://doi.org/10.1529/biophysj.104.058388

Granados—Fuentes, D., Tseng, A., Herrog, E. D. (2006). A circadian clock in the olfactory bulb control olfactory responsivity. J. Neurosci., 26, 12219-25. DOI: https://doi.org/10.1523/JNEUROSCI.3445-06.2006

Guilding, C., Piggins, H. D. (2007). Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain? Eur. J. Neurosci., 25, З195-216. DOI: https://doi.org/10.1111/j.1460-9568.2007.05581.x

Haas, R., Alenciks, E., Meddle, S., et al. (2017). Expression of deep brain photoreceptors in the Pekin drake: a possible role in the maintenance of testicular function. Poult. Sci., 96, 2908-19. DOI: https://doi.org/10.3382/ps/pex037

Hastings, M. H., Maywood, E. S., O'Neill, J. S. (2008) Cellular circadian pacemaking and the role of cytosolic rhythms. Curr. Biol., 18, 805-15.

Hastings, M. H., Maywood, E. S., Brancaccio, M. (2018). Generation of circadian rhythms in the suprachiasmatic nucleus. Nat. Rev. Neurosci., 19 (8), 45З-69. DOI: https://doi.org/10.1038/s41583-018-0026-z

Honma S. (2018). The mammalian circadian system: a hierarchical multi—oscillator structure for generating circadian rhythm. J. Physiol. Sci., 68 (3), 207-19. DOI: https://doi.org/10.1007/s12576-018-0597-5

Ikeda, M., Sugiyama, T., Wallace, C. S., et al. (200З). Circadian dynamics of cytosolic and nuclear Ca2+ in single suprachiasmatic nucleus neurons. Neuron., 38, 25З-6З. DOI: https://doi.org/10.1016/S0896-6273(03)00164-8

Jan, J., Wang, H., Liu, Y., et al. (2008). Analysis of gene regulatory networks in the mammalian circadian rhythm. PLoS Comput. Biol., 4, 100019З.

Johnston, J. D. (2005). Measuring seasonal time within the circadian system: regulation of the suprachiasmatic nuclei by photoperiod. J. Neuroendocrinol., 17 (7), 459-65. DOI: https://doi.org/10.1111/j.1365-2826.2005.01326.x

Kim, P., Oster, H., Lehnert, H., et al. (2019). Coupling the circadian clock to homeostasis: the role of period in timing physiology. Endocr. Rev., 40 (1), 66-95. DOI: https://doi.org/10.1210/er.2018-00049

Kornmann, B., Schaad, O., Bujard, H., et al. (2017). System—driven and oscillator—dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol., 5, З4.

Kosonsiriluk, S., Manro, L. J., Chaiworakul, V., et al. (201З). Photoreceptive oscillators within neurons of the premamilary nucleus (PMM) and seasonal reproduction in temperate zone birds. Gen. Comparative Endocrinol., 190 (1), 149-55. DOI: https://doi.org/10.1016/j.ygcen.2013.02.015

Koyanagi, M., Terakina, A., Kubokawa, K., et al. (2002). Amphioxus homolog of Go-coupled rhodopsin and periopsin having 11-cis- and all-trans-retinal as their chromophores. FEBS Lett., 531, 525-8. DOI: https://doi.org/10.1016/S0014-5793(02)03616-5

Koyanagi, M., Kawano, E., Kinugawa, Y., et al. (2004). Bistable UV pigment in the lamprey pineal. Proc. Natl. Acad. Sci USA, 101, 6687-91. DOI: https://doi.org/10.1073/pnas.0400819101

Koyanagi, M., Terakita, A. (2014). Diversity of animal opsin-based pigments and their optogenetic potential. Biochim. Biophys. Acta Bioenerg., 1В37, 710-16. DOI: https://doi.org/10.1016/j.bbabio.2013.09.003

Kriegsfeld, L. J., Le Santer, J., Silver R. (2004). Targeted microlesions reveal novel organization of the hamster suprachiasmatic nucleus. J. Neurosci., 24, 2449-57. DOI: https://doi.org/10.1523/JNEUROSCI.5323-03.2004

Kuenzel, W. J. (2015). Exploring avian deep-brain photoreceptors and their role in activating the neuroendocrine regulation of gonadal development. Poult. Sci., 94, 786-98. DOI: https://doi.org/10.3382/ps.2014-04370

Kuenzel, W. J. (2018). Mapping the brain of the chicken (Gallus G), with emphasis on the septal—hypothalamic region. Gen. Comp. Endocrinol., 256, 4-15. DOI: https://doi.org/10.1016/j.ygcen.2017.09.003

Kunz, H., Achermann, Y. (2003). Simulation of circadian rhythms generation in the suprachiasmatic nucleus with locally coupled self-sustained oscillators. J Theor. Biol., 224, 63-73. DOI: https://doi.org/10.1016/S0022-5193(03)00141-3

Lamia, K. A., Storch, K. F., Weits, C. J. (2008). Physiological significance of a peripheral tissue circadian clock. Proc. Natl. Acad. Sci. USA, 105 (39), 15172-77. DOI: https://doi.org/10.1073/pnas.0806717105

Lelong, J.-C., Goldbeter, A. (2003). Toward a detailed computational model for the mammalian circadian clock. Proc. Natl. Acad. Sci USA, 100, 7051-56. DOI: https://doi.org/10.1073/pnas.1132112100

Liu, A. C., Welch, D. K., Ko, C. H., et al. (2007). Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell, 129 (3), 605-16. DOI: https://doi.org/10.1016/j.cell.2007.02.047

Locke, J. C., Westermark, P. O., Kezamer, A., et al. (2008). Global parameter seach reveals design principles of the mammalian circadian clock. BMC Syst. Biol., 2, 22. DOI: https://doi.org/10.1186/1752-0509-2-22

Lowrey, P. L., Takahashi, J. S. (2004). Mammalian circadian biology: elucidating genome—wide levels of temporal organization. Annn Rev. Genomics Hum. Genet., 5, 407-41. DOI: https://doi.org/10.1146/annurev.genom.5.061903.175925

Lucassen, E. A., van Diepen, H. C., Houben, T., et al. (2012). Role of vasoactive intestinal peptide in seasonal encoding by the suprachiasmatic nucleus clock. European J. of Neurosci., 35 (9), 1466-74. DOI: https://doi.org/10.1111/j.1460-9568.2012.08054.x

Lundkvist, G. B., Kwak, Y., Davis, E. K., et al. (2005). A calcium flux is required for circadian rhythm generation in mammalian pacemaker neurons. J. Neurosci., 25, 7682-86. DOI: https://doi.org/10.1523/JNEUROSCI.2211-05.2005

Nakane, Y., Ikegami, K., Ono, H., et al. (2010). A mammalian neural tissue opsin (OPSIN5) is a deep brain photoreceptor in birds. Proc. Natl. Acad. Sci. USA, 107, 15264-68. DOI: https://doi.org/10.1073/pnas.1006393107

Marion, K. R. (1982). Reproductive cues for gonadal development in temperate reptiles: temperature and photoperiod effects on the testicular cycle of the lizard sceloporus undulates. Herpetologica, 3В, 26-39.

Meddle, S. L., Follett, B. K. (1997). Photoperiodically driven changes in Foc expression within the basal

tuberal hypothalamus and medial eminence of J. quail. J. Neurosci., 17, 8909-18.

Menaker, M., Murphy, Z. C., Sellix, M. T. (2013). Central control of peripheral circadian oscillators. Curr. Opin. Neurobiol, 23 (5), 741-46. DOI: https://doi.org/10.1016/j.conb.2013.03.003

Menet, J. S., Pescatore, S., Roshash, M. (2014). CLOCK: BMAL1 is a pioneer-like transcription factor. Genes&Dev, 2В (1), 8-13.

Mirsky, H. P., Liu, A. C., Welsh, D. K., et al. (2009). 3rd A Model of the cell-autonomous mammalian circadian clock. Proc. Natl. Acad. Sci. USA, 106, 11107-12. DOI: https://doi.org/10.1073/pnas.0904837106

Mistry, P., Duong, A., Kirshenbaum, L., et al. (2017). Cardiac clock and preclinical translation. Heart Fail. Clin., 13 (4), 657-72. DOI: https://doi.org/10.1016/j.hfc.2017.05.002

Morin, L. P., Allen, C. N. (2006). The circadian visual system. Brain Res. Rev., 51, 1-60. DOI: https://doi.org/10.1016/j.brainresrev.2005.08.003

Nagano, M., Adachi, A., Nakahama, K., et al. (2003). An abrupt shift in the day/night cycle causes desynchrony in the mammalian circadian center. J. Neurosci., 23 (14), 6141-51. DOI: https://doi.org/10.1523/JNEUROSCI.23-14-06141.2003

Nakamura, W., Honma, S., Shirakawa, T., et al. (2001). Regional pacemakers composed of multiple oscillator neurons in the rat suprachiasmatic nucleus. Eur. I. Neurosci., 14, 666-74. DOI: https://doi.org/10.1046/j.0953-816x.2001.01684.x

Nakamura, W., Honma, S., Shirakawa, T., et al. (2002). Clock mutation lengthens the circadian period without damping rhythms in individual SCN neurons. Nat. Neurosci., 5, 399-400. DOI: https://doi.org/10.1038/nn843

Nakamura, T. J., Sellix, M. T., Menaker, M., et al. (2008). Estrogen directly modulates circadian rhythms of PER2 expression in the uterus. Am. J. Physiol. Endocrinol Metabol, 295, 1025-31. DOI: https://doi.org/10.1152/ajpendo.90392.2008

Nielsen, H. S., Hannibal, J., Fahrenkrug, J. (2002). Vasoactive intestinal polypeptide induces per1 and per2 gene expression in the rat suprachiasmatic nucleus late at night. Eur. J. Neurosci., 15, 570-4. DOI: https://doi.org/10.1046/j.0953-816x.2001.01882.x

Nitabach, M. N., Holmes, T. C., Blau, J. (2005). Membranes, ions, and clock: testing the NSH model of the circadian oscillator. Methods Enzymol., 393, 682-93. DOI: https://doi.org/10.1016/S0076-6879(05)93036-X

Ohta, H., Yamazaki, S., Mc Mahon, D. C. (2005). Constant light desychronizes mammalian clock neurons. Nature Neurosci., 30, 30. DOI: https://doi.org/10.1038/nn1395

O'Neill, J. S., May Wood, E. S., Cheshan, J. E., et al. (2008). cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science, 320, 949-53. DOI: https://doi.org/10.1126/science.1152506

O'Neill, J. S., Reddy, A. B. (2012). The essential role of cAMP/Ca2+ signalling in mammalian circadian timekeeping. Biochem. Soc. Transl., 40 (1), 44-50. DOI: https://doi.org/10.1042/BST20110691

Ortiz-Tudela, E., Mteyrek, A., Ballestra, A., et al. (2013). Cancer chronotherapeutics: experimental, theoretical, and clinical aspects. Handb. Exp. Pharmacol., 217, 261-88. DOI: https://doi.org/10.1007/978-3-642-25950-0_11

Pakhotin, P., Harmar, A. J., Verkhratsky, A., et al. (2006). VIP receptor control excitability of suprachiasmatic nuclei neurons. Pfluger Arch., 452, 7-15. DOI: https://doi.org/10.1007/s00424-005-0003-z

Perez, J. H., Furlow, J. D., Wingfield, J. C., et al. (2016). Regulation of vernal migration in Gambel's white-crowned sparrows: role of thyroxine and triiodothyronine. Horm. Behav., 84, 50-6. DOI: https://doi.org/10.1016/j.yhbeh.2016.05.021

Perez, J. H., Meddle, S. L., Wingfield, J. C., et al. (2018). Effects of thyroid hormone manipulation on pre-nuptial molt, luteinizing hormone and testicular growth in male white-crowned sparrows (Zonotrichia leuchophrys gambelii). Gen. Comp. Endocrinol., 255, 12-8. DOI: https://doi.org/10.1016/j.ygcen.2017.09.025

Perez, J. H., Tola, E., Dunn, I. C., et al. (2019). A comparative perspective in extra-retinal photoreception. Trends in Endocrin.&Metabol, 30 (1), З9-5З. DOI: https://doi.org/10.1016/j.tem.2018.10.005

Potter, H., Alenciks, F., Frazier, K., et al. (2017). Immunolession of melanopsin neurons causes gonadal regression in Pekin drakes (Anas platyrhynchos domcsticus). Gen. Comp. Endocrinol., 15, 16-22.

Porcn, A., Riddle, M., Dulcis, D. S., et al. (2018). Photoperiod-induced neuroplasticity in the circadian system. Neural Plast. URL: https://www.hindawi.com/ journals/np/2018/5147585/.

Ralf, M. R., Menaker, M. (1989). GABA regulation of circadian to light. I. Involvement of GABAA-benzodiazepine and GABAB receptors. J. Of Neuroscience, 9 (8), 2858-65.

Reilly, D. F., Westgade, E. J., Fitz Gerald, G. A. (2007). Peripheral circadian clock in the vasculature. Arterioscler. Thromb. Vase. Biol., 27 (8), 1694-705. DOI: https://doi.org/10.1161/ATVBAHA.107.144923

Reinke, H., Asher, G. (2019). Crosstalk between metabolism and circadian clock. Nat. Rev. Mol. Cell. Biol., 20 (4), 227-241. DOI: https://doi.org/10.1038/s41580-018-0096-9

Reppert, S., Weaver, D., Rivkees, S., et al. (1988). Putative melatonin receptors in a human biological clock. Science, 242 (4875), 78-81.

Sato, T. K., Yamada, R. G., Ukai, H., et al. (2006). Feedback repression is reguired for mammalian circadian clock function. Nat. Genet., 38 (3), 312-З19.

Scott, E. M. (2015). Circadian clock, obesity and cardiometabolic function. Diabetes Obes. Metabol., Suppl. 1, 84-89. DOI: https://doi.org/10.1111/dom.12518

Shang, X., Odom, D. T., Koo, S. H., et al. (2005). Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissue. Proc. Natl. Acad. Sci. USA, 102 (12), 4459-64.

Siepka, S. M., Yoo, S. H., Park, J., et al. (2007). Genetics and neurobiology of circadian clock in mammals. Cold Spring Harh. Symp. Quant. Biol., 72, 25З-9. DOI: https://doi.org/10.1101/sqb.2007.72.052

Spitzer, N. C. (2015). Neurotransmitter switching? No surprise. Neuron., 86 (5), 11З1-44. DOI: https://doi.org/10.1016/j.neuron.2015.05.028

Spitzer, N. C. (2017). Neurotransmitter switching in the developing and adult brain. Annu Rev. Neurosci., 40, 1-19. DOI: https://doi.org/10.1146/annurev-neuro-072116-031204

Stevenson, T. J., Ball, G. F. (2012). Disruption of neuropsin mRNA expression via RNA interference facilitates the photoinduced increase in thyrotropin-stimulating subunit в in birds. Eur. J. Eurosci., 36, 2859-65. DOI: https://doi.org/10.1111/j.1460-9568.2012.08209.x

Stevenson, T. J., Kumar, V. (2017). Neural control of daily and seasonal timing of songbird migration. J. Comp. Physiol. А., 20З, 399-405. DOI: https://doi.org/10.1007/s00359-017-1193-5

Stokkan, K. A., Yamazaki, S., Tei, H. et al. (2001). Entrainment of the circadian clock in the liver by feeding. Science, 291, 490-З. DOI: https://doi.org/10.1126/science.291.5503.490

Storch, K. F., Paz, C., Signorovitch, J., et al. (2007). Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell, 130 (4), 7З0-41. DOI: https://doi.org/10.1016/j.cell.2007.06.045

Takahashi, J. S., Hong, H. K., Ko, C. H., et al. (2008). The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat. Rev. Genet., 9, 764-75. DOI: https://doi.org/10.1038/nrg2430

Ueda, H. R., Hayashi, S., Chen, W., et al. (2005). Systemic level identification of transcriptional circuits underlying mammalian circadian clocks. Nat. Genet., 37 (2), 187-92. DOI: https://doi.org/10.1038/ng1504

Vanden, Top M., Buijs, R. M., Ruijter, J. M., et al. (2001). Melatonin generates an outward potassium current in rat suprachiasmatic nucleus neurons in vitro independent of their circadian rhythm. Neuroscience, 107 (1), 99-108.

Vander, Leest, H. T., Honben, T., Michel, S., et al. (2017). Seasonal encoding by the circadian pacemaker of the SCN. Current Biol., 17 (5), 468-7З.

Van Veen, T. (1976). Light—dependent motor activity and photonegative behavior in the eel (Anguilla anguilla L.). J. Comp. Physiol., 111, 209-19. DOI: https://doi.org/10.1007/BF00605532

Vujovic, N., Davidson, A. J., Menaker, M. (2008). Sympathetic input modulates, but does not determine, phase of peripheral circadian oscillators. Am. J. Physiol. Regul. Integr. Comput. Physiol., 295, З55-60. DOI: https://doi.org/10.1152/ajpregu.00498.2007

Walton, J. C., Haim, A., Spieldenner, J. M., Nelson, R. J. (2012). Photoperiod alters fear responses and basolateral amygdala neuronal spine density in white-footed mice (Peromyscus leucopus). Behavioural Brain Res., 233 (2), З45-50. DOI: https://doi.org/10.1016/j.bbr.2012.05.033

Wang, J., Zhou, T. (2010). cAMP-regulated dynamics of the mammalian circadian clock. Biosystems, 101 (2), 1З6-4З. DOI: https://doi.org/10.1016/j.biosystems.2010.06.001

Welsh, D. K., Logothetic, D. E., Meister, M., et al. (1995). Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron, 14, 697-706. DOI: https://doi.org/10.1016/0896-6273(95)90214-7

Welsh, D., K., Yoo, S. H., Liu, A. C., et al. (2014). Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr Biol., 14, 2289-95. DOI: https://doi.org/10.1016/j.cub.2004.11.057

Welsh, D. K., Takahashi, J. S., Kay, S. A. (2010). Suprachiasmatic Nucleus: cell autonomy and network properties. Annu. Rev. Physiol., 72, 551-77. DOI: https://doi.org/10.1146/annurev-physiol-021909-135919

Wieselthier, A. S., Van Tienhoven, A. (1999). The thyroidectomy variable effects seasonality in female American tree sparrows (Spizella-arborea). Gen. Comp. Endocronol., 1114, 425-З0.

Yamazaki, S., Numano, R., Abe, M., et al. (2000). Resetting central and peripheral circadian oscillators in transgenic rats. Science, 2ВВ, 682-85. DOI: https://doi.org/10.1126/science.288.5466.682

Yan, L., Karatsoreos, I., Lesauter, J., et al. (2007). Exploring spatiotemporal organization of SCN circuits. Cold Spring Harb. Symp. Quantum Biol., 72, 527-41. DOI: https://doi.org/10.1101/sqb.2007.72.037

Yoo, S. H., Yamazaki, S., Lowrey, R. L., et al. (2004). PERIOD2: LUCIFERASE real—time reporting of circadian dynamics reveals persistent circadian DOI: https://doi.org/10.1073/pnas.0308709101

oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. USA, 101 (15), 5339-46.

Zhan, K., Shi, J., Wang, H., Xie, Y., Li, Q. (2017). Computational mechanisms of pulse-coupled neural networks: A comprehensive review. Archives of Computational Methods in Engineering, 24 (3), 573-88. DOI: https://doi.org/10.1007/s11831-016-9182-3

Zhan, K., Zhang, H. J., Ma, Y. D. et al. (2009). New spiking cortical model for invariant texture retrieval and image processing. IEEE Trans. on neural networks, 20 (12), 1980-86. DOI: https://doi.org/10.1109/TNN.2009.2030585

##submission.downloads##

Опубліковано

2020-06-04

Як цитувати

Мінцер, О. П., Заліський, В. М., & Бабінцева, Л. Ю. (2020). СИСТЕМНІ МЕХАНІЗМИ ФОТОРЕГУЛЯЦІЇ ОСЦИЛЯТОРНИХ МЕРЕЖ КЛІТИННОГО МЕТАБОЛІЗМУ ТА ЗДОРОВ’Я ЛЮДИНИ. Медична інформатика та інженерія, (4), 6–25. https://doi.org/10.11603/mie.1996-1960.2019.4.11015

Номер

Розділ

Статті