ТРАНСФОРМУВАННЯ ЗНАНЬ З АТЕРОГЕНЕЗУ: ВИКОРИСТАННЯ НАНО-АСОЦІЙОВАНИХ БІОТЕХНОЛОГІЙ І МЕРЕЖЕВОГО АНАЛІЗУ

Автор(и)

  • O. P. Mintser Національна медична академія післядипломної освіти імені П. Л. Шупика https://orcid.org/0000-0002-7224-4886
  • V. M. Zaliskyi Національна медична академія післядипломної освіти імені П. Л. Шупика

DOI:

https://doi.org/10.11603/mie.1996-1960.2019.1.10106

Ключові слова:

атеросклероз, атерогенез, нанорозмірні сполуки, запалення, сигналлінг, печінковий рецептор LXRs, моделювання процесів розвитку атерогенезу

Анотація

Розглянуто питання змінення знань про виникнення, розвиток і можливості профілактики атеросклерозу. Показано, що концепція про роль запалення як тригера ядра серцево-судинних захворювань на даний час має першочергове значення. Постулюється також, що мікроби можуть впливати на атерогенез різними прямими або непрямими засобами, тому, їх слід враховувати в якості факторів, сприяючих прогресуванню атеросклерозу. Отже, концепція сприяє подальшому дослідженню в зазначеній області. Підкреслюється думка, що печінковий рецептор LXRs лежить на перетині ліпідного обміну, вродженого імунітету, запалення та практично всіх основних шляхів розвитку атеросклеротичних уражень і серцево-судинних захворювань. Важливо зосередити увагу на процесах нано опосередкованого виявлення та терапевтичного контролю розвитку атеросклерозу за допомогою таргетування клітин (макрофагів інтими, «пінистих» клітин, ендотеліоцитів) і процесів (неоангіогенезу, протеолізу, апоптозу, тромбозу, метаболізму ліпопротеїнів високої щільності (HDL) і запалення).

Посилання

Mintser, O. P., Zalisky, V. M. (2018). KardIologIchnI aspekti merezhevoYi meditsini [Cardiologic aspects of network medicine]. Medichna informatika ta inzheneriya (Medical Informatics & Engineering), 3, 17-27. [In Ukrainian]. doi: https://doi.org/10.11603/ mie.1996-1960.2018.3.9462.

Hritsai, N. V. (2016). Matematicheskaya model metabolicheskogo protsessa ateroskleroza [Mathematical model of the metabolic process of atherosclerosis]. Ukrainskiy bIomedichniy zhurnal (Ukrainian biomedical journal), 88 (4), 75-84. [In Russian].

Zalessky, V. N., Gavrilenko, T. P. (2008). Autoimmunnyie i immunovospalitelnyie protsessyi pri ateroskleroze, ego nutrientyi profilaktika i terapiya: Monografiya [Autoimmune and immuno-inflammatory processes in atherosclerosis, its nutrients prevention and therapy: Monograph]. Kiev: VIPOL, 591 p. [In Russian].

Zalessky, V. N., Dynnik, O. B. (2007). Koronarnaya tomograficheskaya diagnostika: novyie metodyi vizualizatsii v klinike: Monografiya [Coronary tomographic diagnosis: new methods of imaging in the clinic: Monograph]. Kiev: VIPOL, 277 p. [In Russian].

Zalessky, V. N., Movchan, B. A. (2012). Personalizirovannaya meditsina: perspektivyi ispolzovaniya nanobiotehnologiy [Personalized medicine: the prospects for the use of nano-biotechnology]. Ukrainskiy meditsinskiy zhurnal (Ukrainian Medical Journal), 1 (87), 38-42. [In Ukrainian].

Kozhanova, T. V., Neudakhin, E. V., Zhilina, S. S. et al. (2018). Geneticheskaya predraspolozhennost k razvitiyu ateroskleroza [Genetic predisposition to the development of atherosclerosis]. Arhiv vnutrenney meditsinyi (Archive of Internal Medicine), V. 8: 6, 407-417. [In Russian].

Kuzik, Yu. I. (2016). Ispolzovanie matriksnoy metalloproteinazyi-9 (MMP-9) i eyo tkanevogo ingibitora patomorfologicheskoy diagnostike koronarnoy patologii [The use of matrix metalloproteinase-9 (MMP-9) and its tissue inhibitor pathomorphological diagnosis of coronary pathology]. Patologiya (Pathology), 1 (36), 37-44. [In Russian].

Nasonov, E. A., Popkova, T. V. (2018). Ateroskleroz: perspektivyi protivovospalitelnoy terapii [Atherosclerosis: perspectives of anti-inflammatory therapy]. Terapevticheskiy arhiv (Therapeutic archive), 5, 4-12. [In Russian].

Alimohammadi M., Pichardo-Almarra C., Agu O. (2017). "etal Amultiscale modelling approach to understand atherosclerosis. Proc/ Inst. Mech. Eng. H., 231(5), 378-390. DOI: https://doi.org/10.1177/0954411917697356

Bartneck M., Peters F.M., Warrecha K.T., et al. (2014). Liposomal encapsulation of dexamethasone neodulates cytotoxicity, inflammatory cytokine response, and migratory properties of primary human macrophages. Nanomedicine, 10(6), 1209-1220. DOI: https://doi.org/10.1016/j.nano.2014.02.011

Bjarano J., Navarro Marquer M., M Zavala F., et al.

(2018). Nanoparticles for diagnostic and therapy of atherosclerosis and myocardial infarction. Theranostics, 8 (7), 4710-4732. DOI: https://doi.org/10.7150/thno.26284

Boyer C., Whittaker M.R., Bulmus V., et al. (2010). The design and utility of polymer stabilized iron oxide nanoparticles for nanomedicine applications. NPG Asia Materials, 2, 23-30. DOI: https://doi.org/10.1038/asiamat.2010.6

Boyle E.C., Sedding D.G., Haverich A. (2017). Targeting vasa vasorum dysfunction to prevent atherosclerosis. Vascul Pharmacol, 96-98, 5-10. DOI: https://doi.org/10.1016/j.vph.2017.08.003

Buynkhatipoglu K., ClyneA.M. (2011). Superparamagnetic iron oxide nanoparticles changes endothelial cell morphology and mechanics via reactive oxygen species. J. Biomed. Mater. Res. A., 96 (1), 186-195.

Cagnin S., Biscnola M., Patuzzo C., et al. (2009). Reconstruction and functional analysis of altered molecular pathways in human atherosclerotic arteries. BMC Genomies, 10, 13. DOI: https://doi.org/10.1186/1471-2164-10-13

Chalmers A.D., Bursill C.A., Myerscough M.R. (2017). Nonlinear dynamics of early atherosclerotic plague formation may determined the efficacy of high density lypoproteins (HDLS) in plaque regression. PLoS One, 12 (11), e0187674. DOI: https://doi.org/10.1371/journal.pone.0187674

Chacko A.M., Hood E.D., Zem B.J., et al. (2011). Targeted Nanocarriers for imaging and therapy of vascular inflammation. Curr. Opin. Colloid Interface Sci., 16(3), 215-227. DOI: https://doi.org/10.1016/j.cocis.2011.01.008

Chen L.L., Yang L. (2017). ALUternafive regulation for gene expression. Trends Cell Biol., 27 (7), 480-490. DOI: https://doi.org/10.1016/j.tcb.2017.01.002

Cheng D., Li X., Zhang C., et al. (2015). Detection of vulnerable atherosclerosis plaques with a dual modal Single Photon Emission Computed Tomography. / Magnetic Resonance Imaging probe targeting apoptotic macrophages. ACS Appl. Mater. & Interfaces, 7, 2847-2855. DOI: https://doi.org/10.1021/am508118x

Corti R., Hutter R., Badimon J.J., et al. (2004). Evolution concepts in the trial of atherosclerosis, inflammation and thrombosis. J. Thromb. Thrombolysis, 17 (1), 35-44. DOI: https://doi.org/10.1023/B:THRO.0000036027.39353.70

Cukier A.M., Therond P., Didichenko S.A., et al. (2017). Structure functional relationships in reconstituted HDL: focus on antioxidative activity and cholesterol efflux capacity. Biochem. Biophys. Akta Mol. Cell. Biol. Lipids, 1862 (9), 890-900.

Daskalova E., Baev V., Rusinov V., et al. (2007). 3'VTR located ALU elements: donors of potential miRNA target cites and mediators of network miRNA based regulatory interactions. Evol .Bioinform. Online, 2, 103-120.

De Vries M.R., Quax P.H. (2016). Plaque angiogenesis and its relation to inflammation and atherosclerosis plaque destabilization. Curr. Opin. Lipidol, 27 (5), 499-506. DOI: https://doi.org/10.1097/MOL.0000000000000339

Duivenvoorden R., Tong J., Cormode D.P., et al. (2014). A statin loaded reconstituted high density lipoprotein nanoparticle inhibits atherosclerotic plague inflammation. Nat. Commun., 5, 3065.

El Khatib N., Genieys S., Kazmierczak B., et al. (2009). Mathematical modeling of atherosclerosis as an inflammatory diseases. Philos. Trans. A. Math. Phys. Eng. Sci., 367 (1908), 4877-4886.

El Khatib N., Genieys S., Kazmierczak B., et al. (2012). Reaction diffusion model of atherosclerosis development. J. Math. Biol., 65 (2), 349-374. DOI: https://doi.org/10.1007/s00285-011-0461-1

El Dakdonki M.H., El Bubbon K., Kamat M., et al. (2014). CD44 targeting magnetic gluconanoparticles for atherosclerotic plaque imaging. Pharm. Res., 3, 1426-1437. DOI: https://doi.org/10.1007/s11095-013-1021-8

Emilson V., Thorleifsson G., Zhang B., et al. (2008). Genetics of gene expression and its effect on diseases. Nature, 452 (7186), 423-428.

Fadok V.A., Bratton D.L., Frasch S.C., et al. (1998). The role of phosphatidylserine in recognition of apoptotic cell by phagocytes. Cell Death Differ., 5, 551-562. DOI: https://doi.org/10.1038/sj.cdd.4400404

Getts D.R., Terry R.L., Getts M.T., et al. (2014). Therapeutic inflammatory monocyte modulation using immune modifying microparticles. Sci. Transl. Med., 6 (219), 219ra7.

Gitsiondis G., Chatririsis Y.S., Wolf P., et al. (2017). Combined non invasive assessment of endothelial shear stress and molecular imagine of inflammation for the prediction of inflamed plaque in hyperlipidacmic rabbit cortas. Eur. Heart J. Cardiovasc. Imaging., 18 (1), 19-30. DOI: https://doi.org/10.1093/ehjci/jew048

Gilchrist M., Thorsson V., Li B., et al. (2006). System biology approaches identify ATF3 as a negative regulator of Tall like receptor 4. Nature, 441,173-178. DOI: https://doi.org/10.1038/nature04768

Gonzalez Rodrigner D., Bazakat A.I. (2015). Dynamics of receptor mediated nanoparticle internalization into endothelial cell. PLoS ONE, 10 (4), e0122097. DOI: https://doi.org/10.1371/journal.pone.0122097

Hao W., Friedman A. (2014). The LDL HDL profile determines the risk of atherosclerosis: a mathematical model. PLoS ONE, 9 (3), e90497. DOI: https://doi.org/10.1371/journal.pone.0090497

Harel Adar T., Ben Mordechai T., AmsalemY., et al. (2011). Modulation of cardiac macrophages by phosphatidylserine presenting liposomes improves infarct repair. Proc. Natl. Acad. Sci. USA, 108 (5), 1827-1832. DOI: https://doi.org/10.1073/pnas.1015623108

Holdt L.M., Hoffmann S., Sass K., et al. (2013). Aln element in ANRIL non coding ANA at chromosome 9p21 modulate atherogenic cell function through trans regulation of gene network. PLoS Genet., 9 (7), e1003588. DOI: https://doi.org/10.1371/journal.pgen.1003588

Hossain S.S., Zhang Y., Fu X., et al. (2015). MRI based computational modelling of blood flow and nanomedicine deposition in patients with peripheral arterial diseases. J. R. Soc. Interface, 12 (106), 20150001.

Holzer M., Trieb M., Konya V., et al. (2013). Aging affects high density lipoprotein composition and function. Biochan. Biophys. Acta., 1831 (9), 1442-1448. DOI: https://doi.org/10.1016/j.bbalip.2013.06.004

Hueso M., De Ramon L., Navarro E., et al. (2016). Silencing of CD40 in vivo reduces progression of experimental atherogenesis through an NF kB/miR125 axis and reveals new potential mediators in pathogenesis of atherosclerosis. Atherosclerosis, 255, 80-89. DOI: https://doi.org/10.1016/j.atherosclerosis.2016.11.002

Hueso M., Crnzado J.M., Torras J., et al. (2018). ALUminating the part of atherosclerosis progression. Chaos theory suggest a role for alu repeated is the development atherosclerotic vascular discase. Int. J. Mol. Sci., 19 (6), 1734.

Iversen N.M., Ilondre N.M., SparKs S.M., et al. (2011). Dual use of amphipluilic macromolecules as cholesterol efflux triggers and inhibitors of macrophage athero inflammation. Biomaterials, 32 (32), 8319-8327. DOI: https://doi.org/10.1016/j.biomaterials.2011.07.039

Kaul S., Coin B., Hedayit A., at al. (2004). Rapid reversal of endothelial dysfunction in hypercholesterolemic apolipoprotein E null mice by recombinant apolipoprotein ?.1 (Milano) phospholipid complex. J. Am. Coll. Cardiol., 44 (6), 1311-1319. DOI: https://doi.org/10.1016/j.jacc.2004.06.028

Kelly K.A., Allpat J.R., Tsourkas A., et al. (2005). Detection of vascular adhesion molecule 1 expression using a novel multimodal nanoparticles. Circ. Res., 96, 327-336. DOI: https://doi.org/10.1161/01.RES.0000155722.17881.dd

Kelley W.J., Safari H., Loper Cazares G., et al. (2016). Vascular targeted nanocarriers: design considerations and strategies for successful treatment of atherosclerosis and other vascular diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 8 (6), 909-926. DOI: https://doi.org/10.1002/wnan.1414

Kietselaer B.L., Reutelingsprerger C.P., Heidendal G.A., et al. (2004). Noninvasive detection of plague instability with use of radiolabeled annexin A5in patients with carotid artery atherosclerosis. N. Engl. J. Med., 350, 1472-1473. DOI: https://doi.org/10.1056/NEJM200404013501425

Klecmann R., Verschuren L., van Erk M.J., et al. (2007). Atherosclerosis and liver inflammation induced dietary cholesterol intake: a combined transcrirtomics and metabolomics analysis. Genome Biol., 8 (9), R200.

Kooj M.E., Cappendijk V.C., Cleutjens K.B., et al. (2003). Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo MRI. Circulation., 107, 2453-2458. DOI: https://doi.org/10.1161/01.CIR.0000068315.98705.CC

Lenschner F., Dutta P., Gorbatov R. (2011). Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat. Biotechnol., 29 (11), 1005-1010. DOI: https://doi.org/10.1038/nbt.1989

Li Z.Y., Howarth S.P., Tang T., et al. (2006). How critical is fibrous cap thickness to carotid plaque stability? A flow plaque interaction model. Stroke, 37 (5), 1195-1199.

Libby P., Ridker P.M., Maseri A. (2002). Inflammation and atherosclerosis. Circulation, 105 (9), 1135-1143. DOI: https://doi.org/10.1161/hc0902.104353

Libby P. (2002). Inflamation in atherosclerosis. Nature, 420 (6917), 868-874. DOI: https://doi.org/10.1038/nature01323

Libby P., DiCarli M., Weissleder R. (2010). The vascular biology of atherosclerosis and imaging targets. J. Nucl. Med., 51 (Suppl 1), 33-37. DOI: https://doi.org/10.2967/jnumed.109.069633

Libby P. (2012). Inflammation in atherosclerosis. Artherioscler. Thromb. Vasc. Biol., 32 (9), 2045-2051. DOI: https://doi.org/10.1161/ATVBAHA.108.179705

Lipinski M.J., Frias J.C., Amirbekian V., et al. (2009). Macrophage specific lipid based nanoparticles improve cardiac magnetic resonance detection and characterization of human atherosclerosis. JACC Cardiovasc. Imaging, 2, 637-647. DOI: https://doi.org/10.1016/j.jcmg.2008.08.009

Lobatto M.E., Fayad Z.A., Silvera S., et al. (2010). Multimodal clinical imaging to longitudinally assess a nanomedical anti inflammatory treatment in experimental atherosclerosis. Mol. Farm., 7 (6), 2020-2029. DOI: https://doi.org/10.1021/mp100309y

Lobatto M.E., Fuster V., Fayad Z.A., et al. (2011). Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nat. Rev. Drug. Discow., 4. 10 (11), 835-852. DOI: https://doi.org/10.1038/nrd3578

Luthi A.J., Patel P.C., Ko C.H., et al. (2010). Nanotechnology for seguthetic high density lipoproteins. Trends Mol. Med., 16 (12), 553-560. DOI: https://doi.org/10.1016/j.molmed.2010.10.006

Luthi A.J., Lyssen Ko N.N., Quach D., et al. (2015). Robust passive and active efflux of cellular cholesterol to a designer functional mimic of HDL. J. Lipid. Res., 56 (5), 972-985. DOI: https://doi.org/10.1194/jlr.M054635

Mangin L., Leseche G., Duprey A., et al. (2011). Ventilatory chaos is impaired in carotid atherosclerosis. PLoS ONE, 6, e16297. DOI: https://doi.org/10.1371/journal.pone.0016297

Meng J., Yang D., Jia L., et al. (2012). Impacts of nanoparticles on cardiovascular diseases: modulating metabolism and function of EC. Curr. Drug. Metab., 13 (8), 1123-1129. DOI: https://doi.org/10.2174/138920012802850056

Moore K.J., Sheedy T.J., Fisher E.A. (2013). Macrophages on atherosclerosis: a dynamic balance. Nat. Rev. Immunol., 13 (10), 709-721. DOI: https://doi.org/10.1038/nri3520

Morishige K., Kacher D.F., Libby P., et al. (2010). High resolution magnetic resonance imaging enhanced with superparamagnetic nanoparticles measures macrophage burden in atherosclerosis. Circulation, 122, 1707-1715. DOI: https://doi.org/10.1161/CIRCULATIONAHA.109.891804

Nahrendorf M., Jaffer F.A., Kelly K.A., et al. (2006). Noninvasive vascular cell adhesion molecule 1 imaging identifies inflammation activation of cells in atherosclerosis. Circulation, 114, 1504-1511. DOI: https://doi.org/10.1161/CIRCULATIONAHA.106.646380

Nahrendorf M., Waterman P., Thurber G., et al. (2009). Hybrid in vivo FMT CT imaging of protease activity in atherosclerosis with customerized nanosensors. Atheroscler. Tromb. Vasc. Biol., 29 (10), 1444-1451. DOI: https://doi.org/10.1161/ATVBAHA.109.193086

Patel S.K., Janjic J.M. (2015). Macrophage targeted theranostics as personalized nanomedicine strategies for inflammatory diseases. Theranostics, 5 (2), 150-172. DOI: https://doi.org/10.7150/thno.9476

Peters D., Kastantin M., Katamrajn V.R., et al. (2009). Targenting atherosclerosis by using modular, multifunctional micelles. Proc. Natl. Acad. Sci. USA, 106 (24), 9815-9819. DOI: https://doi.org/10.1073/pnas.0903369106

Pirro M., Simental Mendia L.E., Bjanconi U., et al. (2019). Effect of statin therepy on arterial wall inflammation based on 18 F FDG PET/CT: a systematic review and meta analysis of interventional studies. J. Clin. Med., 8 (1), 118.

Qin J., Peng C., Zhag B., et al. (2014). Noninvasive detection of macrophage in atherosclerotic lesions by computed tomography enhanced with PEGylated gold nanoparticles. Int. J. Nanomedicine, 9, 5575-5590.

Quillard T., Croce K., Jaffar F.A., et al. (2011). Molecular imagine of macrophage protease activity in cardiovascular inflammation in vivo. Thromb. Haemostas, 105 (5), 828-836. DOI: https://doi.org/10.1160/TH10-09-0589

Quillard T., Croce K.J. (Eds.) (2015). Cardiovascular imagine: Pathobiology and mechanisms of atherosclerosis. Springer, 3-38.

Ramsey S.A., Klemm S.L., Zak D.E., et al. (2008). Uncovering a macrophage transcriptional program by integrating evidence from motif scanning and expression dynamics. PLoS Comput. Biol., 4 (3), e1000021. DOI: https://doi.org/10.1371/annotation/1c55be5f-ecd7-49be-91c1-91881be60297

Ramsey S.A., Gold E.S., Aderem A. (2010). A system biology approch to understanding atherosclerosis. EMBO Mol. Med., 2 (3), 79-89. DOI: https://doi.org/10.1002/emmm.201000063

Rosenson R.S., Brewer H.B., Ansell B.J., et al. (2016). Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat. Rev. Cardiol., 13 (1), 48-60. DOI: https://doi.org/10.1038/nrcardio.2015.124

Schwertani A., Choi H.Y. (2018). HDLS and the pathogenesis of atherosclerosis. Cur. Opin. Cardiol., 33 (3), 311-316. DOI: https://doi.org/10.1097/HCO.0000000000000508

Shalhoub J., Sikkel M.B., Davies K.J., et al. (2014). Systems biology of human atherosclerosis. Vasc. Endevasc. Sury., 48 (1), 5-17. DOI: https://doi.org/10.1177/1538574413510628

Sharma G., She Z G., Valenta D.T., et al. (2010). Targenting of macrophage foam cells in atherosclerotic plague using

oligonucleotide functionalized nanoparticles. Nano Life, 1 (3-4), 207-214.

Scharlach C., Kratz H., Weikhorst F., et al. (2015). Synthesis of asid stabilired iron oxide nanoparticles and comparison for targeting atherosclerotic plaques: evaluation by MRI, quantitative MPS and TEM alternative to ambiguous Prussian blue iron staining. Nanomedicine: Nanotechn. Biol. Med., 11, 1085-1095.

Skajaa T., Cormode D.P., Falk E., et al. (2010). High density lipoprotein based contrast agents for multimodal imagine of atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 30 (2), 169-176. DOI: https://doi.org/10.1161/ATVBAHA.108.179275

Skogsberg J., Lundstrom J., Kovacs A., et al. (2018). Transcriptional profiling uncovers a network of cholesterol. PLoS Genet., 4 (3), e1000036.

Spengler R.M., OaKley C.K., Davidson B.L. (2014). Functional microRNAS and target sites are created by lineage specific transposition. Hum. Mol. Genet., 23 (7), 1783-1793. DOI: https://doi.org/10.1093/hmg/ddt569

Sosnovik D.E., Nahrendorf M., Deliolauis N., et al. (2007). Fluorescence tomography and magnatic resonance imaging of megocardial macrophages infiltration in infarcted. Circulation, 115, 1384-1391. DOI: https://doi.org/10.1161/CIRCULATIONAHA.106.663351

Starmans L.W., Burdinskii D., Haex N.P., et al. (2013). Iron oxide nanoparticle micelles (ION micelles) for sensitive magnetic particle imaging and MRI. PLos One, 8 (2), e57335. DOI: https://doi.org/10.1371/journal.pone.0057335

Terashima M., Uchida M., Kosuge H., et al. (2011). Human ferritin cages for imagine vascular macrophages. Biomatherial, 32, 1430-1437. DOI: https://doi.org/10.1016/j.biomaterials.2010.09.029

Trayanova N.A., O'hara T., Bayer J.D., et al. (2012). Computational cardiology: how computer simulation could be used to develop new therapeutic and advance existing ones. Europace, 14 (Suppl. 5), 82-89. DOI: https://doi.org/10.1093/europace/eus277

Truchiya K., Nitta N., Sonoda A., et al. (2012). Evaluation of atherosclerotic lesions using dextran and mannan dextran coated USPIO: MRI analysis and pathological findings. Int. J. Nanomed., 7, 2271-2281.

Vander Volk F.M., van Wijk D.F., Lobatto M.E., et al. (2015). Prednisolone containing liposomes accumulate in human atherosclerotic macrophages upon intravenous administration. Nanomedicine, 11 (5), 1039-1046. DOI: https://doi.org/10.1016/j.nano.2015.02.021

Weissleder R., Nahrendorf M., Pittet M.J. (2014). Imagine macrophages with nanoparticles. Nat. Mater., 13 (2), 125-138. DOI: https://doi.org/10.1038/nmat3780

Wen S., Lin D F., Cui Y., et al. (2014). In vivo MRI detection of carotid atherosclerotic lesions and kidney inflammation in ApoE deficient nice by using LOX 1 targeted iron nanoparticles. Nanomedicine: nanotechnology, Biol.&Med., 10, 639-649. DOI: https://doi.org/10.1016/j.nano.2013.09.009

Wheelock C.E., Wheelock A.M., Kawashima S., et al. (2009). Systems biology approaches and pathway tools for investigating cardiovascular disorders. Mol. Biosyst., 5 (6), 588-602. DOI: https://doi.org/10.1039/b902356a

Winter P.M., Morawski A.M., Caruthers S.D., et al. (2003). Molecular imaging of angiogenesis in early stage atherosclerosis in early stage atherosclerosis with aVB3 integrin targeted nanoparticles. Circulation., 108 (18), 2270-2274. DOI: https://doi.org/10.1161/01.CIR.0000093185.16083.95

Winter P.M., Caruthers S.D., Zhang H., et al. (2008). Antiangiogenic synergism of integrin targeted fumagillin nanoparticles and atorvastatin in atherosclerosis. JACC Cardiovascular Imagine, 1 (5), 624-634. DOI: https://doi.org/10.1016/j.jcmg.2008.06.003

Winter P.M., Caruthers S.D., Allen J.S., et al. (2010). Molecular imagine of angiogenesis therapy in peripheral vascular disease with aVB3 integrin targeted nanoparticles. Magn. Reson. Med., 64 (2), 369-376. DOI: https://doi.org/10.1002/mrm.22447

Yang X., Deignan J.L., Qi N., et al. (2009). Validation of candidate causal genes for obesity that affect shared metabolic pathways and network. Nat. Genet., 41 (4), 415-423. DOI: https://doi.org/10.1038/ng.325

Yilmaz A., Dengler M.A., van der Kulp H., et al. (2013). Imaging of miocardial infarction using ultrasmall superparamagnetic iron oxide nanoparticles: a human study using MRI approach. Europ. Heart J., 34, 462-475. DOI: https://doi.org/10.1093/eurheartj/ehs366

Zhang X.Q., Even Or O., Xu X., et al. (2015). Nanoparticles containig a liver X receptor agonist inhibit inflammation and atherosclerosis. Adv. Healthe Mater., 4 (2), 228-236. DOI: https://doi.org/10.1002/adhm.201400337

Zhang L., Chen J.G., Zhao Q. (2015). Regulatory roles of Alu trancript on gene expression. Exp. Cell. Res., 338 (1), 113-118. DOI: https://doi.org/10.1016/j.yexcr.2015.07.019

Zhang L., Zu Y., Dhanasekaza S., et al. (2017). Detection and treatment of atherosclerosis using nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 9 (1), 10.1002. DOI: https://doi.org/10.1002/wnan.1412

Zheng W., Hnang R., Jiang B., et al. (2016). Detection and treatment of atherosclerosis research model based on microfluidics. Small., 12, 2022-2034. DOI: https://doi.org/10.1002/smll.201503241

Zhu M.T., Wang B., Wang Y., et al. (2011). Endothelial dyfunction and inflammation induced by iron exide nanoparticle exposure: risk factors for early atherosclerosis. Toxicol Left., 203 (2), 162-171. DOI: https://doi.org/10.1016/j.toxlet.2011.03.021

Calkin A. and Tontonoz P. (2010). LXR signaling pathways and atherosclerosis/ Arterioscler Thromb Vasc Biol., Aug; 30(8).

Joseph SB, McKilligin E, Pei L, et al. (2002). Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci USA, 99: 7604-7609.

Levin N, Bischoff ED, Daige CL et al. (2005). Macrophage liver X receptor is required for antiatherogenic activity of LXR agonists. Arterioscler Thromb Vasc Biol., 25, 135-142. DOI: https://doi.org/10.1161/01.ATV.0000150044.84012.68

Joseph SB, Castrillo A, Laffitte BA et al. (2003). Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med., 9: 213-219.

Glass CK, Witztum JL. (2001). Atherosclerosis. The road ahead Cell., 104:503-516.

##submission.downloads##

Опубліковано

2019-05-10

Як цитувати

Mintser, O. P., & Zaliskyi, V. M. (2019). ТРАНСФОРМУВАННЯ ЗНАНЬ З АТЕРОГЕНЕЗУ: ВИКОРИСТАННЯ НАНО-АСОЦІЙОВАНИХ БІОТЕХНОЛОГІЙ І МЕРЕЖЕВОГО АНАЛІЗУ. Медична інформатика та інженерія, (1), 4–24. https://doi.org/10.11603/mie.1996-1960.2019.1.10106

Номер

Розділ

Статті