UP-TO-DATE COMPUTER GRID-TECHNOLOGIES AND THEIR APPLICATION IN MEDICAL RESEARCHES

Authors

  • О. І. Kornelyuk institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine
  • O. P. Mintser National Medical Academy of Post-Graduate Education by P.L. Shupyk of Ministry of Public Health of Ukraine http://orcid.org/0000-0002-7224-4886

DOI:

https://doi.org/10.11603/mie.1996-1960.2008.1.167

Abstract

Issues of developing and applying of the newest perspective information direction – Grid-technology in medicine and
biology are considered. Its major feature is an opportunity of opening the way of transforming a global network of computers
into an integral practically unlimited computing resource which can have a crucial importance for development of medicine
and biology.
Grid is also defined as an universal infrastructure uniting computers common territorial – distributing system.
The time leader on Grid creation networks in the world is the USA where since 2004, a strategic Grid – Program directed
to the creation of integral national space for high-power calculations.
In Europe since April, 2004 a big project ENABLING GRIDS FOR E-SCIENCE within the framework of which the all-
European infrastructure based on Grid – technologies has been carrying out.
Biomedicine is one of the directions, chosen in Europe for developing and implementing Grid – technologies. First of all,
it concerns problems of creating databases of patient’s hereditary diseases. On the other hand, biomedical Grids are created
for drawing up databases of various clinics with the purpose of creating a virtual hospital.
Grid – medicine is a Grid infrastructure containing a specialized computer service, adapted for problems of processing
biomedical data. Accordingly, resources in Grid – medicine are computer resources, specialized bases of medical data,
specialized medical devices and complexes.
The first applicationsof Grid – technologies have shown the importance of Grid-computing paradigm for genomes researches
and processing of medical images, in particular in such areas as oncology, neurosurgery, radiotherapy.
The key concept of Grid – technologies is creating a virtual organization – a group the users distributed territorially having
common aim and which will share their resources.
Some examples of the created virtual laboratories and projects in area Grid – medicine are considered:
Area 1. Medical graph and images processing.
Area 2. Modeling a patient’s body for choosing treatment tactics and surgical intervention.
Area 3. Grid – technologies in pharmacy.
Area 4. Grid in genome to medicine.
Area 5. Virtual biomedical universities and electronic training.
For the first time a Program of information of the National Academy of Sciences within the framework of which a Ukrainian
National Grid has been realized in Ukraine since 2005.
In 2007, under the initiative of the Ministry of Education and Science of Ukraine National Grid– infrastructures for maintenance
of scientific researches and educations were created in Ukraine.
The use of the firstly created Grid segment of the National Academy of Sciences and in perspective a national network will
give an opportunity to successfully integrate into the international scientific projects which are carried out in Europe and in
other world centers of science. Undoubtedly, the development Grid – technologies and their implementation into practical
public health services, scientific researches and educational process will allow one to lead the level of training medical
students and medical specialists to the level of the best world standards.

References

Foster I. What is the Grid? A Three Point Checklist. - July 20, 2002. - 4р.

Foster I., Kesselman C. The Grid 2 Blueprint for a New Computing Infrastructure. Second Edition. - Elsevier, 2003. -777 p.

Загородній А.Г., Зінов'єв Г.М., Мартинов Є.С., Свистунов С.Я., Шадура В.Н. Грід - нова інформаційно-обчислювальна технологія для науки. // Вісник НАН України. - № 6. - 2005. - С. 17-25.

Foster I., Kesselman C., Tuecke S. The Anatomy of the Grid: Enabling Scalable Virtual Organizations // International Journal of High Performance Computing Applications. -2001. -15 (3).- Р. 200-222.

Foster I., Kesselman C., Nick J., Tuecke S. The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration. - http://www.globus.org/research/ papers/ogsa.pdf.

Breton V., Medina R., Montagnat J. DataGrid, prototype ofa biomedical grid // Methods of Information in Medicine. -2003.- 42(2). - Р. 143-147.

Cerello Р. et al. GPCALMA: a Grid-based Tool for Mammographic Screening // Methods of Information in Medicine. - 2005. - 44 (2). - Р. 244-248.

http://gpcalma.to.infn.it.

Oliveira I.C., Oliveira J.L., Sanchez J.P., Lopez-Alonso V., Martin-Sanchez F., Maojo V., Sousa PereiraAGrid requirements for the integration of biomedical information resources for health applications // Methods of Information in Medicine. -2005. - 44(2). - Р. 161-167.

Hastings S., Oster S., Langella S., Kurc T.M., Pan T., Catalyurek U.V., Saltz J.H. A grid-based image archival and analysis system // Am. Med. Inform. Assoc. - 2005. - Vol. 12, № 3. - Р. 286-295.

Warren R., Solomonides A.E., del Frate C., Warsi I., Ding J., Odeh M., McClatchey R., Tromans C., Brady M., Highnam R., Cordell M., Estrella F., Bazzocchi M., Amendolia S.R. MammoGrid - a prototype distributed mammographic database for Europe // Clin. Radiol. - 2007. - 62 (11). - Р. 10441051.

Pan T.C., Gurcan M.N., Langella S.A., Oster S.W., Hastings S.L., Sharma A., Rutt B.G., Ervin D.W., Kurc T.M., Siddiqui K.M., Saltz J.H., Siegel E.L. Informatics in radiology: GridCAD: grid-based computer-aided detection system // Radiographics.- 2007. - 27 (3). - Р. 889-897.

Erberich S.G., Silverstein J.C., Chervenak A., Schuler R., Nelson M.D., Kesselman C. Globus MEDICUS - Federation of DICOM Medical Imaging Devices into Healthcare Grids // Stud Health Technol Inform. - 2007. -126. - Р. 269-278.

Germain-Renaud C., Osorio A., Texier R. Interactive Volume Reconstruction and Measurement on the Grid // Methods of Information in Medicine. - 2005. - 44(2). - Р. 227-232.

Graschew G., Roelofs T.A., Rakowsky S., Schlag P.M., Heinzlreiter P., Kranzlmuller D., Volkert J. Virtual hospital and digital medicine - why is the GRID needed? // Stud. Health Technol. Inform. - 2006. -120. - P. 295-304.

Beux P.L., Fieschi M. Virtual biomedical universities and e-learning // Int. J. Med. Inform. - 2007. - May - Jun; 76 (5-6). -P. 331-335.

Huang G., Reynolds R., Candler C. Virtualpatient simulation at US and Canadian medical schools // Acad. Med. - 2007. -May; 82 (5). - P. 446-451.

Shyu F.M., Liang Y.F., Hsu W.T., Luh J.J., Chen H.S. A problem-b ased e-Learning prototype system for clinical medical education // Medinfo. - 2004. -11 (Pt 2). - P. 983-987.

Medelez Ortega E/, Burgun A., Le Duff F., Le Beux P. Collaborative environment for clinical reasoning and distance learning sessions // Int. J. Med. Inform. - 2003. - Jul; 70 (2-3). -P. 345-351.

Riley J.B., Austin J.W., Holt D.W., Searles B.E., Darling E.M. Internet-based virtual classroom and educational management software enhance students' didactic and clinical experiences in perfusion education programs // J Extra Corpor. Technol. - 2004. - Sep; 36 (3). - P. 235-239.

Seka L.P., Duvauferrier R., Fresnel A., Le Beux P. A virtual university Web system for a medical school // Medinfo. -1998. - 9 (Pt 2). - P. 772-776.

Morin A., Benhamou A.C., Spector M., Bonnin A., Debry C. The French language virtual medical university // Stud. Health Technol. Inform. - 2004. -104. - P. 213-219.

Tobias J., Chilukuri R., Komatsoulis G. A., Mohanty S., Sioutos N., Warzel D.B., Wright L.W., Crowley R.S. The CAP cancer protocols - a case study of caCORE based data standards implementation to integrate with the Cancer Biomedical Informatics Grid // BMC Med. Inform. Decis. Mak. - 2006. - Jun. 20; 6. - P. 25.

Olabarriaga S.D., Nederveen A.J., Snel J.G., Belleman R.G. Towards a virtual laboratory for FMRI data management and analysis // Stud. Health Technol. Inform. -2006. -120. - P. 43-54.

Jacq N., Salzemann J., Legre Y., Reichstadt M., Jacq F., Zimmermann M., Maass A., Sridhar M., Vinod-Kusam K., Schwichtenberg H., Hofmann M., Breton V. Demonstration of in silico docking at a large scale on grid infrastructure // Stud. Health Technol. Inform. - 2006. -120. - P. 155-157.

Pan T. C., Gurcan M. N., Langella S. A., Oster S. W., Hastings S. L., Sharma A., Rutt B. G., Ervin D. W., Kurc T. M., Siddiqui K. M., Saltz J. H., Siegel E. L. Informatics in radiology: GridCAD: grid-based computer-aided detection system // Radiographics. - 2007. - May - Jun; 27 (3). - P. 889-897.

Oliveira I.C., Oliveira J.L., Sanchez J.P., Lopez-Alonso V., Martin-Sanchez F., Maojo V., Sousa Pereira AGrid requirements for the integration ofbiomedical information resources for health applications // Methods Inf. Med. - 2005. - 44 (2). - P. 161-167.

Published

2012-11-20

How to Cite

Kornelyuk О. І., & Mintser, O. P. (2012). UP-TO-DATE COMPUTER GRID-TECHNOLOGIES AND THEIR APPLICATION IN MEDICAL RESEARCHES. Medical Informatics and Engineering, (1). https://doi.org/10.11603/mie.1996-1960.2008.1.167

Issue

Section

Articles