DEVELOPMENT OF CONCEPTS ABOUT THE SYSTEMIC INTERACTION OF THE NERVOUS AND IMMUNE SYSTEMS IN THE PROBLEMS OF MATHEMATICAL MODELING OF THE IMMUNE RESPONSE IN INFLAMMATION
DOI:
https://doi.org/10.11603/mie.1996-1960.2024.3-4.15461Keywords:
mathematical modeling, neuroimmune interaction, inflammation distribution, afferent pathway, efferent pathways, immune response, systems biomedicine, clinical application, immunoinformaticsAbstract
Background. The research is devoted to the analysis of pathways and the exchange of information between the immune and nervous systems. Information about the presence of bacterial antigens and lipopolysaccharides (LPS) in the cervix, intestines and parenchymal organs is found in the cerebrums along parasympathetic pathways, and when the nervus vagus is cut, the CNS neutrons do not respond to their introduction. Electrophysiological studies and analysis of the structures of the hypothalamus on the brain cells to replace c–Fos protein is a marker of neuron activation, to identify those with a pattern of activation of brain structures when administered different antigens different.
It is clear to say that the algorithm changes the electroneurograms characteristic of the reaction to the song cytokine. The presence of any antigens in the body results in the production of cytokines (IL-1, TNFα, IL-6, IFNy, etc.), receptors that act on peripheral neutrons and nerve endings in the vagus, thus afferent completion of neutrons n. vagus can be influenced by cytokines and whose signals are transmitted to the neurons of the central nervous system. A set of data available in the literature about the availability of information in the brain about bacterial antigens, LPS and inoculation of the inflammatory type allows the development of clinical methods of subdivision n. vagus in the clinic for illnesses of ignition, allergic and auto allergic nature. There are also more extensive mathematical models of the immune system that describe the complex hierarchy of immune processes at the cellular, molecular and genetic levels. The modeling includes a description of the cellular and humoral organs of the immune type with the differentiation of Th lymphocytes into three phenotypes – Th1, Th2, and Th17. The specificity of the modeling and research of peers in private studies is similar to the description of the processes of proliferation and differentiation of lymphocytes with the saving of memory about the number of divisions, passed through the skin cells, which in the future will help to create more accurate models of the immune type, which will address the genetic characteristics of the dynamics of these cellular processes, as well as the synthesis cytokines IL-17, IL-21. The purpose of the study was to conceptualize approaches to integrating high-throughput data collection methods and experimental methods with mathematical approaches to gain a better understanding of how the immune system functions in different levels of functioning of the body.
Materials and methods. A theoretical analysis and systematization of research results was conducted using leading scientometric databases. Research object: systematic development of large-scale mathematical models describing the development of immune responses at different levels of detail; structuring medical knowledge about the pathways and information exchange between the immune and nervous systems. The following methods were used in the study: information modeling, mathematical modeling, clustering and taxonomy, ADAPT methodology, expert assessment methods, meta-analysis.
Results. The hypothesis of organizing the process of transferring information about the immune system to the brain from the autonomic nerves is considered. It is emphasized that this process is carried out by stretching the muscles, and the response to information about the antigenic action in the brain is realized through the reflex mechanism, then lasting a fraction of a second, which is shown when the ignition develops types. What is new is the rational regulation of the function of the immune system.
To uncover information related to human immunology and its functions, immunoinformatics methods are widely used in biomedical research - the integration of complex experiments on a genome scale experiment was performed considering immunological pathway focused Bayesian statistical integration. For the development of modern systemic immunology and the new interdisciplinary field
- mathematical immunology, it is necessary to continue the systematic development of richly large- scale mathematical models that describe the development immune reactions at the next level of detail: 1) internal cellular regulation of the activity of components of the immune system; 2) population dynamics of cells in organs and 3) systemic immune physiological processes in the entire organism.
Conclusions. The development of mathematical modeling in the field of infectious diseases in a living organism will allow us to reasonably move on to setting the tasks of optimal treatment of adverse forms of diseases based on systems models that integrate the dynamics of pathogen spread during the development of immune reactions and the distribution of drugs.
References
Fillip, C. (1973). Mechanism of suppressing anaphylaxis though electrolytic lesion of the terral region of the hypothalamus. Ann. Allergy., 36, 272–278.
Mallick, P., Schirle, M., Chen, S. S. et al. (2007). Computational prediction of prototypic peptides for quantitative proteomics. Nat Biotechnol., 25, 125–131.
Mintser, O. P., Zalisky, V. M. (2020). Systemna biomedytsyna (u dvokh tomakh) Tom 1. Kontseptualizatsiya (rozdil III u spivavt. z L. Yu. Babintseva, M. A. Popova). [Systems Biomedicine (in two volumes) Vol. 1. Conceptualization] (chapter III in co-authorship with L. Yu. Babintseva, M. A. Popova). Kyiv: NVP “Interservice”. 490 p.
Calvo, W. (1968). The innervation of the bone marrow in laboratory animals. J. Anat., 123 (2), 315–328.
Korneva, E. A., Klimenko, V. M., Shkhinek, E. K. (1985). Neurohumoral Maintenance of Immune Homeostasis; Translated and Edited by S. A. Corson and E. O’Leary Corson, in Collaboration with R. Dartau, J. Epp, L. A. Mutschler. Chicago: University of Chicago Press. 253 p. ISBN: 0226450422.
Blalock, J. E. (1984). The immune system as a sensory organ. Journal of Immunology, 132 (3), 1067–1070. doi: 10.4049/jimmunol.132.3.1067. DOI: https://doi.org/10.4049/jimmunol.132.3.1067
Perekrest, S. V., Abramova, T. V., Novikova, N. S. (2009). Comparative analysis of orexin-containing neurons reactions in the rat hypothalamus after lipopolysaccharide injection in different doses. Ross Fiziol Zh Im I. M. Sechenova, 95 (12), 1336–1345.
Germain, R., Meier-Schellersheim, M., Nita-Lazar, A., Fraser, I. (2011). Systems biology in immunology: a computational modeling perspective. Annu Rev Immunol., 29, 527–585. doi: 10.1146/annurev-immunol-030409-101317. DOI: https://doi.org/10.1146/annurev-immunol-030409-101317
Korneva, E. A., Perekrest, S. V., Shainidze, K. Z. et al. (2017). Effects of Restraint Stress on Lipopolysaccharide–Induced Reactions of Orexinergic System. Advances in Neuroimmune Biology, 6 (3–4), 131–138. doi:10.3233/NIB–160115. DOI: https://doi.org/10.3233/NIB-160115
Mallick, P., Schirle, M., Chen, S. S. et al. (2007). Computational prediction of proteotypic peptides for quantitative proteomics. Nat Biotechnol., 25, 125–131. doi: 10.1038/nbt1275. DOI: https://doi.org/10.1038/nbt1275
Bessedovsky, H. O., del Rey, A. (1996). Immune- neuro-endocrine interactions: facts and hypotheses. Endocr. Rew., 17 (1), 64–102. doi: 10.1210/edrv-17-1-64. DOI: https://doi.org/10.1210/edrv-17-1-64
Abrahaw, C. S., Harada, N., Devi, M. A. et al. (2002). Transient Forebrain Ischemia Increases the Blood-Brain Barrier Permeability for Albumin in Stroke-Prone Spontaneously Hypertensive Rats. Cell Molecular Neurobiol., 22 (4), 455–462. DOI: https://doi.org/10.1023/A:1021067822435
Blalock, J. E., Smith, E. M. (1980). Human leukocyte interferon: structural and biological relatedness to adrenocorticotropic hormone and endorphins. Proc Natl Acad Sci USA, 77 (10), 5972–
doi: 10.1073/pnas.77.10.5972. DOI: https://doi.org/10.1073/pnas.77.10.5972
Blalock, J. E. (1989). A molecular basis for bidirectional communication between the immune and neuroendocrine systems. Physiol. Rew., 69 (1), 1–32. doi: 10.1152/physrev.1989.69.1.1. DOI: https://doi.org/10.1152/physrev.1989.69.1.1
Lanzarotti, E., Marcatili, P., Nielsen, M. (2019). T-Cell Receptor Cognate Target Prediction Based on Paired α and β Chain Sequence and Structural CDR Loop Similarities. Front. Immunol., 10, 2080. doi: 10.3389/fimmu.2019.02080. DOI: https://doi.org/10.3389/fimmu.2019.02080
Cano, G., Svod, A. F., Rinaman, J. et al. (2001). Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing. J. Comp. Neurol., 439 (1), 1–18. doi: 10.1002/cne.1331. DOI: https://doi.org/10.1002/cne.1331
Dénes, A., Boldogkoi, Z., Uhereczky, G. et al. (2005). Central autonomic control of the bone marrow: multisynaptic tract tracing by recombinant pseudorabies virus. Neuroscience, 134 (3), 947–963. DOI: https://doi.org/10.1016/j.neuroscience.2005.03.060
Trotte, R. N., Stoznetta, R. L., Guyenet, P. G. et al. (2007). Transneuronal mapping of the CNS network controlling sympathetic outflow to the rat thymus. Aufon. Neurosci., 131 (1–2), 9–20. doi: 10.1016/j.autneu.2006.06.001. DOI: https://doi.org/10.1016/j.autneu.2006.06.001
Calvo, W. (1968). The innervation of the bone marrow in laboratory animals. Am J Anat., 123 (2), 315–328. DOI: https://doi.org/10.1002/aja.1001230206
Goehler, L. E., Gaykema, R. P., Hansen, M. K. et al. (2000). Vagal immune-to-brain communication: a visceral chemosensory pathway. Auton Neurosci., 85 (1–3), 49–59. doi: 10.1016/S1566-0702(00)00219-8. DOI: https://doi.org/10.1016/S1566-0702(00)00219-8
Goehler, L. E., Gaykema, R. P., Opitz, N. et. al. (2005). Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun., 19 (4), 334–344. DOI: https://doi.org/10.1016/j.bbi.2004.09.002
Reardon, C., Murray, K., Lomax, A. E. (2018). Neuroimmune Communication in Health and Disease. Physiol Rev., 98 (4), 2287–2316. doi: 10.1152/physrev.00035.2017. DOI: https://doi.org/10.1152/physrev.00035.2017
Hasegawa, S., Inoue, T., Inagi, R. (2019). Neuroimmune interactions and kidney disease. Kidney Res Clin Pract., 38 (3), 282–294. DOI: https://doi.org/10.23876/j.krcp.19.014
Liu, L., Zhao, M., Yu, X., Zang, W. (2019). Pharmacological Modulation of Vagal Nerve Activity in Cardiovascular Diseases. Neurosci Bull, 35 (1), 156–166. doi: 10.1007/s12264–018–0286–7. DOI: https://doi.org/10.1007/s12264-018-0286-7
Metz, C. N., Pavlov, V. A. (2018). Vagus nerve cholinergic circuitry to the liver and the gastrointestinal tract in the neuroimmune communicatome. Am. J. Phsiol. Gastrointest Liver Physiol., 315 (5), G651– G658. doi: 10.1152/ajpgi.00195.2018. DOI: https://doi.org/10.1152/ajpgi.00195.2018
Chavan, S. S., Pavlov, V. A., Tracey, K. J. (2017). Mechanisms and Therapeutic Relevance of Neuro- immune Communication. Immunity, 46 (6), 927–942. doi: 10.1016/j.immuni.2017.06.008. DOI: https://doi.org/10.1016/j.immuni.2017.06.008
Steinberg, B. E., Tracey, K. J., Slutsky, A. S. (2014). Bacteria and the neural code. N Engl J Med., 371 (22), 2131–2133. doi: 10.1056/NEJMcibr1412003. DOI: https://doi.org/10.1056/NEJMcibr1412003
Pavlov, V. A., Tracey, K. J. (2015). Neural circuitry and immunity. Immunol Res., 63 (1–3), 38–57. doi: 10.1007/s12026-015-8718-1. DOI: https://doi.org/10.1007/s12026-015-8718-1
Martelli, D., Yao, S. T., McKinley, M. J. et al. (2014). Reflex control of inflammation by sympathetic nerves, not the vagus. J Physiol., 592 (7), 1677–1686. doi: 10.1113/jphysiol.2013.268573. DOI: https://doi.org/10.1113/jphysiol.2013.268573
Mirakaj, V., Dalli, J., Granja, T. et al. (2014). Vagus nerve controls resolution and pro-resolving mediators of inflammation. J Exp Med., 211 (6), 1037–1048. doi: 10.1084/jem.20132103. DOI: https://doi.org/10.1084/jem.20132103
Tracey, K. J. (2016). Reflexes in Immunity. Cell, 164 (3), 343–344. DOI: https://doi.org/10.1016/j.cell.2016.01.018
Ordovas-Montanes, J., Rakoff-Nahoum, S., Huang, S. et al. (2015). The Regulation of Immunological Processes by Peripheral Neurons in Homeostasis and Disease. Trends Immunol., 36 (10), 578–604. doi: 10.1016/j.it.2015.08.007. DOI: https://doi.org/10.1016/j.it.2015.08.007
Olofsson, P. S., Levine, Y. A., Caravaca, A. et al. (2015). Single-Pulse and Unidirectional Electrical Activation of the Cervical Vagus Nerve Reduces Tumor Necrosis Factor in Endotoxemia. Bioelectron Med., 2, 37–42. doi: 10.15424/bioelectronmed.2015.00006. DOI: https://doi.org/10.15424/bioelectronmed.2015.00006
Hohlfeld, R., Dornmair, K., Meinl, E. et al. (2016). The search for the target antigens of multiple sclerosis, part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets. Lancet Neurol., 15 (2), 198–209. doi: 10.1016/S1474-4422(15)00334-8. DOI: https://doi.org/10.1016/S1474-4422(15)00334-8
van den Ham, H. J., de Boer, R. J. (2012). Cell division curtails helper phenotype plasticity and expedites helper T-cell differentiation. Immunol. Cell. Biol., 90 (9), 860–868. doi: 10.1038/icb.2012.23. DOI: https://doi.org/10.1038/icb.2012.23
Bonaz, B., Sinniger, V., Pellissier, S. (2017). Vagus nerve stimulation: a new promising therapeutic tool in inflammatory bowel disease. J Intern Med., 282 (1), 46–63. doi: 10.1111/joim.12611. DOI: https://doi.org/10.1111/joim.12611
Bellomo, N., Delitala, M. (2008). From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells. Physics of Life Reviews, 5 (4), 183–206. ISSN 1571-0645. doi: 10.1016/j. plrev.2008.07.001. DOI: https://doi.org/10.1016/j.plrev.2008.07.001
Chen, B.-S., Lin, Y.-P., Chuang, Y.-J. (2011). Robust H∞ observer-based tracking control of stochastic immune systems under environmental disturbances and measurement noises. Asian J of Control., 13 (5), 667–690. doi: 10.1002/asjc.421. DOI: https://doi.org/10.1002/asjc.421
Steinman, L. (2014). Immunology of relapse and remission in multiple sclerosis. Annu Rev Immunol., 32, 257–281. doi: 10.1146/annurev- immunol-032713-120227. DOI: https://doi.org/10.1146/annurev-immunol-032713-120227
Gagliani, N., Huber, S. (2017). Basic Aspects of T Helper Cell Differentiation. Methods Mol Biol., 1514, 19–30. doi: 10.1007/978-1-4939-6548-9_2. DOI: https://doi.org/10.1007/978-1-4939-6548-9_2
Bell, G. L. (1970). Mathematical model of clonal selection and antibody production. J Theor Biol., 29 (2), 191–232. doi: 10.1016/0022-5193(70)90019-6. DOI: https://doi.org/10.1016/0022-5193(70)90019-6
Perelson, A. S., Weisbuch, G. (1997). Immunology for physicists. Rev. Mod. Phys., 69, 1219–1268. doi: 10.1103/RevModPhys.69.1219. DOI: https://doi.org/10.1103/RevModPhys.69.1219
Eftimie, R., Gillard, J. J., Cantrell, D. A. (2016). Mathematical Models for Immunology: Current State of the Art and Future Research Directions. Bull Math Biol., 78 (10), 2091–2134. doi: 10.1007/s11538-016- 0214-9. DOI: https://doi.org/10.1007/s11538-016-0214-9
Cappuccio, A., Tieri, P., Castiglione, F. (2016). Multiscale modelling in immunology: a review. Brief Bioinform., 17 (3), 408–418. doi:10.1093/bib/bbv012/. DOI: https://doi.org/10.1093/bib/bbv012
Meier-Schellersheim, M., Fraser, I. D. C., Klauschen, F. (2009). Multiscale modeling for biologists. Wiley Interdiscip Rev Syst Biol Med., 1 (1), 4–14. doi: 10.1002/wsbm.33. DOI: https://doi.org/10.1002/wsbm.33
Benoist, C., Germain, R. N., Mathis, D. (2006). A plaidoyer for ‘systems immunology’. Immunol Rev., 210, 229–234. doi: 10.1111/j.0105-2896.2006.00374.x. DOI: https://doi.org/10.1111/j.0105-2896.2006.00374.x
Roberts, E. (2014). Cellular and molecular structure as a unifying framework for whole-cell modeling. Curr Opin Struct Biol., 25, 86–91. doi: 10.1016/j.sbi.2014.01.005. DOI: https://doi.org/10.1016/j.sbi.2014.01.005
Kuznetsov, S. R., Shishkin, V. I. (2015). Mathematical model of systemic lupus erythematosus (SLE) development: focusing on the dynamics of immune complex formation and Th17 immune response. Autoantibody Research to Standardized Diagnostic Assays in the Management of Human Diseases., 46, AUTOANTIGENS, AUTOANTIBODIES,
AUTOIMMUNITY; September 23–26; 10. Leipzig: Pabst Science Publ.; 140–141.
Coulibaly, A., Bettendorf, A., Kostina, E. et al. (2019). Interleukin-15 Signaling in HIF-1α Regulation in Natural Killer Cells, Insights Through Mathematical Models. Front. Immunol., 10, 2401. doi: 10.3389/fimmu.2019.02401. DOI: https://doi.org/10.3389/fimmu.2019.02401
Louzoun, Y. (2007). The evolution of mathematical immunology. Immunol Rev., 216 (1), 9–20. doi: 10.1111/j.1600–065X.2006.00495.x. DOI: https://doi.org/10.1111/j.1600-065X.2006.00495.x
Low, D. H. P., Motakis, E. (2013). deltaGseg: Macrostate estimation via molecular dynamics simulations and multiscale time series analysis. Bioinformatics, 29 (19), 2501–2502. DOI: https://doi.org/10.1093/bioinformatics/btt413
Kuznetsov, S. R., Shishkin, V. I. (2013). A consolidated view of proliferation and differentiation processes of CD4+ T–lymphocytes: a mathematical model. Rus. Journal of Immunology, 7 (2–3), 176–177.
Grossman, Z. (2019). Immunological Paradigms, Mechanisms, and Models: Conceptual Understanding Is a Prerequisite to Effective Modeling. Front. Immunol., 10, 2522. doi: 10.3389/fimmu.2019.02522/. DOI: https://doi.org/10.3389/fimmu.2019.02522
Mark, T. W., Sandens, M. E. (2010). Primer to the Immune Response; 1st Edition. N.–Y.: Academic Cell. ISBN 0123847435.
Molina-Paris, C., Lithe, G. (2021). Mathematical, Computational and Experimental T Cell Immunology. N.–Y.: Springer Cham. doi: 10.1007/978-3-030-57204-4. DOI: https://doi.org/10.1007/978-3-030-57204-4
Ghosh S. (2020). Computational Immunology: Applications (1st ed.). London: CRC Press. doi: 10.1201/9781351023504. DOI: https://doi.org/10.1201/9781351023504-1
Sharma, A. K. (2019). Immunology (1st ed.). Singapore: Pan Stanford Puble.
Downloads
Published
How to Cite
Issue
Section
License
Journal Medical Informatics and Engineering allows the author(s) to hold the copyright without registration
The majority of Medical Informatics and Engineering Open Access journals publish open access articles under the terms of the Creative Commons Attribution (CC BY) License which permits use, distribution and reproduction in any medium, provided the original work is properly cited. The remaining journals offer a choice of licenses.

This journal is available through Creative Commons (CC) License CC-BY 4.0