DIGITAL PATHOLOGY IN MELANOMA: ACHIEVEMENTS, BARRIERS AND PROSPECTS

Authors

DOI:

https://doi.org/10.11603/mie.1996-1960.2022.4.13411

Keywords:

digital pathology, artificial intelligence, neural networks, malignant neoplasm, melanoma

Abstract

Background. This review is focused on the assessment of the current state of development and implementation of digital pathology in pathologists practice for better diagnostics, counseling, and personalization of melanoma treatment.

Materials and methods. The data concerning the digital pathology tools used for melanoma diagnostics and prognostic/ predictive biomarkers assessment were extracted and analysed.

Results. The convergence of digital pathology and artificial intelligence has led to a paradigm shift in pathologists' practice. Thanks to digital pathology, pathologists got the opportunity to improve the accuracy, efficiency and consistency of melanoma diagnosis. Access to digital tools with assessing whole slide images facilitated improvement of the remote primary diagnostics, provision of teleconsultations, increased efficiency and balance of workload, improves collaboration between general pathologists and dermatopathologists, flourished virtual education and innovative studies. Detection of sub-visual morphometric features and integration of multi-omics data are prerequisites for improving prognostic and predictive information for personalizing the treatment of melanoma patients, which discovers new prospects for precision medicine.

Conclusions. Despite the progress in digital pathology, the implementation of artificial intelligence in diagnostic algorithms of pathologists and personalized treatment requires to solve a number of challenges related to the development and clinical validation of digital tools.

References

Acs, B., Rimm, D. L. (2018). Not just digital pathology, intelligent digital pathology. JAMA Oncol., 4(3), 403-404. DOI: https://doi.org/10.1001/jamaoncol.2017.5449

Alheejawi, S., Xu, H., Berendt, R., Jha, N., Mandal, M. (2019). Novel lymph node segmentation and proliferation index measurement for skin melanoma biopsy images. Comput Med Imaging Graph., 73, 19-29. DOI: https://doi.org/10.1016/j.compmedimag.2019.01.006

Anwa, S. M., Majid, M., Qayyum, A., Awais, M., Alnowami, M., Khan, M. K. (2018). Medical image analysis using convolutional neural networks: a review. J Med Syst., 42, 1-13. DOI: https://doi.org/10.1007/s10916-018-1088-1

Article 89 GDPR: Safeguards and derogations relating to processing for archiving purposes in the public interest, scientific or historical research purposes or statistical purposes. General Data Protection Regulation (GDPR). URL: https://gdpr-info.eu/art-89-gdpr/.

Cereceda, K., Bravo, N., Jorquera, R., Gonzalez-Stegmaier, R., Villarroel-Esprndola, F. (2022). Simultaneous and Spatially-Resolved Analysis of T-Lymphocytes, Macrophages and PD-L1 Immune Checkpoint in Rare Cancers. Cancers (Basel)., 14(11), 2815. DOI: https://doi.org/10.3390/cancers14112815

Chou, M., Illa-Bochaca, I., Minxi, B., Darvishian, F., Johannet, P., Moran, U., et al. (2021). Optimization of an automated tumor-infiltrating lymphocyte algorithm for improved prognostication in primary melanoma. Mod Pathol., 34(3), 562-571. DOI: https://doi.org/10.1038/s41379-020-00686-6

De Logu, F., Ugolini, F., Maio, V., Simi, S., Cossu, A., Massi, D. (2020). Italian Association for Cancer Research (AIRC) Study Group. Nassini, R., Laurino, M. Recognition of Cutaneous Melanoma on Digitized Histopathological Slides via Artificial Intelligence Algorithm. Front Oncol., 10, 1559. DOI: https://doi.org/10.3389/fonc.2020.01559

De Smet, F., Antoranz Martinez, A., Bosisio, F. M. (2020). Next-Generation Pathology by Multiplexed Immunohistochemistry. Trends Biochem, 46 (1), 8082. DOI: https://doi.org/10.1016/j.tibs.2020.09.009

Dimitriou, N., Arandjelovi®, O., Caie, P. D. (2019). Deep learning for whole slide image analysis: an overview. Front Med., 6, 264. DOI: https://doi.org/10.3389/fmed.2019.00264

Dudin, O., Mintser, O., Sulaieva, O. (2021). Artificial intelligence and next generation pathology: towards personalized medicine. Proc Shevchenko Sci Soc Med Sci. doi:10.25040/ntsh2021.02.07. DOI: https://doi.org/10.25040/ntsh2021.02.07

Elder, D. E., Piepkorn, M. W., Barnhill, R. L., Longton, G. M. et al. (2018). Pathologist characteristics associated with accuracy and reproducibility of melanocytic skin lesion interpretation. J Am Acad Dermatol., 79(1), 52-59. DOI: https://doi.org/10.1016/j.jaad.2018.02.070

Elmore, J. G., Barnhill, R. L., Elder, D. E., Longton, G. M. et al. (2017). Pathologists' diagnosis of invasive melanoma and melanocytic proliferations: Observer accuracy and reproducibility study. BMJ, 357, 2813. DOI: https://doi.org/10.1136/bmj.j2813

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J. et al. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542, 115118. DOI: https://doi.org/10.1038/nature21056

Esteva, A., Topol, E. (2019). Can skin cancer diagnosis be transformed by AI? Lancet, 394(10211), 1795. DOI: https://doi.org/10.1016/S0140-6736(19)32726-6

Evans, A. J., Bauer, T. W., Bui, M. M., Cornish, T. C. et al. (2018). Food and Drug Administration Approval of Whole Slide Imaging for Primary Diagnosis: A Key Milestone Is Reached and New Questions Are Raised. Arch Pathol Lab Med., 142(11), 1383-1387. DOI: https://doi.org/10.5858/arpa.2017-0496-CP

Farmer, E. R., Gonin, R., Hanna, M. P. (1996). Discordance in the histopathologic diagnosis of melanoma and melanocytic nevi between expert pathologists. Hum Pathol., 27(6), 528-531. DOI: https://doi.org/10.1016/S0046-8177(96)90157-4

Gao, J., Jiang, Q., Zhou, B., Chen, D. (2019). Convolutional neural networks for computer-aided detection or diagnosis in medical image analysis: an overview. Math Biosci Eng., 16, 6536-6561. DOI: https://doi.org/10.3934/mbe.2019326

GeoMx Digital Spatial Profiling - NanoString Technologies. URL: https://www.nanostring.com/products/geomx-digital-spatial-profiler/geomx-dsp.

Goltsev, Y., Samusik, N., Kennedy-Darling, J., Bhate, S., et al. (2018). Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed Imaging. Cell., 174(4), 968-981. DOI: https://doi.org/10.1016/j.cell.2018.07.010

Govek, K. W., Troisi, E. C., Miao, Z., Woodhouse, S., Camara, P. G. (2020). Single-Cell Transcriptomic Analysis of mIHC Images via Antigen Mapping. doi: 10.1126/sciadv.abc5464. DOI: https://doi.org/10.1101/672501

Halse, H., Colebatch, A. J., Petrone, P., Henderson, M. A. et al. (2018). Multiplex immunohistochemistry accurately defines the immune context of metastatic melanoma. Sci Rep., 8(1), 11158. DOI: https://doi.org/10.1038/s41598-018-28944-3

Han, T., Liu, C., Yang, W., Jiang, D. (2019). Learning transferable features in deep convolutional neural networks for diagnosing unseen machine conditions. ISA Trans., 93, 341-353. DOI: https://doi.org/10.1016/j.isatra.2019.03.017

Hekler, A., Utikal, J. S., Enk, A. H., Berking, C. et al. (2019). Pathologist-level classification of histopathological melanoma images with deep neural networks. Eur J Cancer., 115, 79-83. DOI: https://doi.org/10.1016/j.ejca.2019.04.021

Hekler, A., Utikal, J. S., Enk, A. H., Solass, W. et al. (2019). Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images. Eur J Cancer, 118, 91-96. DOI: https://doi.org/10.1016/j.ejca.2019.06.012

HistoGeneX. Histo Highlights (2016). URL: https://www.histogenex.com/images/PDFs/Histo-Highlights-July-2016-HistoGeneX-Newsletter.pdf.

Ianni, J. D., Soans, R. E., Sankarapandian, S., Chamarthi, R. V., Ayyagari, D., Olsen, T. G. et al. (2020). A Whole Slide Image Classification System Validated on Uncurated Multi-Site Data Emulating the Prospective Pathology Workload. Sci Rep., 10(1), 3217. DOI: https://doi.org/10.1038/s41598-020-59985-2

Kent, M. N., Olsen, T. G., Feeser, T. A., Tesno, K. C., Moad, J. C, Conroy, M. P. et al. (2017). Diagnostic Accuracy of Virtual Pathology vs Traditional Microscopy in a Large Dermatopathology Study. JAMA Dermatol., 153(12), 1285-1291. DOI: https://doi.org/10.1001/jamadermatol.2017.3284

Khosravi, P., Kazemi, E., Imielinski, M., Elemento. O., Hajirasouliha, I. (2018). Deep convolutional neuralnetworks enable discrimination of heterogeneous digital pathology images. EBioMedicine., 27, 317-328. DOI: https://doi.org/10.1016/j.ebiom.2017.12.026

Komura, D., Ishikawa, S. (2019). Machine learning approaches for pathologic diagnosis. Virchows Arch., 475, 131-138. DOI: https://doi.org/10.1007/s00428-019-02594-w

Kucharski, D., Kleczek, P., Jaworek-Korjakowska, J., Dyduch, G., Gorgon, M. (2020). Semi-Supervised Nests of Melanocytes Segmentation Method Using Convolutional Autoencoders. Sensors (Basel)., 20(6), 1546. DOI: https://doi.org/10.3390/s20061546

Kulkarni, S., Seneviratne, N., Baig, M. S., Khan,

A. H. A. (2020). Artificial intelligence in medicine: where are we now? Acad Radiol., 27, 62-70. DOI: https://doi.org/10.1016/j.acra.2019.10.001

Lee, J. H., Daugharthy, E. R., Scheiman, J., Kalhor, R., Yang, J. L., Ferrante, T. C. et al. (2014). Highly multiplexed subcellular RNA sequencing in situ. Science., 343(6177), 1360-1363. DOI: https://doi.org/10.1126/science.1250212

Madabhushi, A., Lee, G. (2016). Image analysis and machine learning in digital pathology: challenges and opportunities. Med Image Anal., 33, 170-175. DOI: https://doi.org/10.1016/j.media.2016.06.037

Meroueh, C., Chen, Z. E. (2022). Artificial intelligence in anatomical pathology: building a strong foundation for precision medicine. Hum Pathol. doi: 10.1016/j.humpath.2022.07.008. DOI: https://doi.org/10.1016/j.humpath.2022.07.008

Merritt, C. R., Ong, G. T., Church, S. E., Barker, K., Danaher, P., Geiss, G. et al. (2020). Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat Biotechnol, 38(5), 586-599. DOI: https://doi.org/10.1038/s41587-020-0472-9

Onega, T., Barnhill, R. L., Piepkorn, M. W., Longton, G. M., Elder, D. E., Weinstock, M. A. et al. (2018). Accuracy of Digital Pathologic Analysis vs Traditional Microscopy in the Interpretation of Melanocytic Lesions. JAMA Dermatol., 154(10), 1159-1166. DOI: https://doi.org/10.1001/jamadermatol.2018.2388

Onega, T., Reisch, L. M., Frederick, P. D., Geller, B. M., Nelson, H. D., Lott, J. P. et al. (2016). Use of Digital Whole Slide Imaging in Dermatopathology. J Digit Imaging., 29(2), 243-253. DOI: https://doi.org/10.1007/s10278-015-9836-y

Pantanowitz, L., Sharma, A., Carter, A. B., Kurc, T., Sussman, A., Saltz, J. (2018). Twenty Years of Digital Pathology: An Overview of the Road Travelled, What is on the Horizon, and the Emergence of Vendor-Neutral Archives. J. Pathol Inform., 9, 40. DOI: https://doi.org/10.4103/jpi.jpi_69_18

Robinson, E., Kulkarni, P. M., Pradhan, J. S., Gartrell, R. D., Yang, C. et al. (2019). Prediction of distant melanoma recurrence from primary tumor digital H&E images using deep learning. J. Clin. Oncol., 37(15I_suppl), 9577-9577. DOI: https://doi.org/10.1200/JCO.2019.37.15_suppl.9577

Saginala, K., Barsouk, A., Aluru, J. S., Rawla, P., Barsouk, A. (2021). Epidemiology of Melanoma. Med. Sci. (Basel)., 9(4), 63. DOI: https://doi.org/10.3390/medsci9040063

Salto-Tellez, M., Maxwell, P., Hamilton, P. (2019). Artificial intelligence-the third revolution in pathology. Histopathology., 74(3), 372-376. DOI: https://doi.org/10.1111/his.13760

Serag, A., Ion-Margineanu, A., Qureshi, H., McMillan, R., Saint Martin, M. J. et al. (2019). Translational AI and Deep Learning in Diagnostic Pathology. Front Med (Lausanne)., 6, 185. DOI: https://doi.org/10.3389/fmed.2019.00185

Sharma, G., Carter, A. (2017). Artificial intelligence and the pathologist: Future frenemies? Arch. Pathol. Lab. Med., 141, 622-623. DOI: https://doi.org/10.5858/arpa.2016-0593-ED

Shen, D., Wu, G., Suk, H. I., (2017). Deep learning in medical image analysis. Annu Rev Biomed Eng.,19, 221-248. DOI: https://doi.org/10.1146/annurev-bioeng-071516-044442

Shoo, B. A., Sagebiel, R. W., Kashani-Sabet, M. (2010). Discordance in the histopathologic diagnosis of melanoma at a melanoma referral center. J. Am. Acad. Dermatol., 62, 751-756. DOI: https://doi.org/10.1016/j.jaad.2009.09.043

Siegel, R. L., Miller, K. D., Fuchs, H. E., Jemal, A. (2021). Cancer Statistics, 2021. CA Cancer J. Clin., 71(1), 7-33. DOI: https://doi.org/10.3322/caac.21654

Stoeckius, M., Hafemeister, C., Stephenson, W., Houck-Loomis, B., Chattopadhyay, P. K., Swerdlow, H., et al. (2017). Simultaneous epitope and transcriptome measurement in single cells. Nat Methods.,14(9), 865-868. DOI: https://doi.org/10.1038/nmeth.4380

Ugolini, F., Pasqualini, E., Simi, S., Baroni, G., Massi, D. (2022). Bright-Field Multiplex Immunohistochemistry Assay for Tumor Microenvironment Evaluation in Melanoma Tissues. Massi. Cancers (Basel)., 14(15), 3682. DOI: https://doi.org/10.3390/cancers14153682

Van Herck, Y., Antoranz, A., Andhari, M. D., Milli, G., Bechter, O., De Smet, F. et al. (2021). Multiplexed Immunohistochemistry and DigitalPathology as the Foundation for Next-Generation Pathology in Melanoma: Methodological Comparison and Future Clinical Applications. Front Oncol., 11, 636681. DOI: https://doi.org/10.3389/fonc.2021.636681

Visiopharm. High-quality alignment of serial sections (2020). URL: https://visiopharm.com/ visiopharm-digital-image-analysis-software-features/ tissuealign/.

Wang, L., Ding, L., Liu, Z., Sun, L., Chen, L., Jia, R. et al. (2020). Automated identification of malignancy in whole-slide pathological images: Identification of eyelid malignant melanoma in gigapixel pathological slides using deep learning. Br. J. Ophthalmol., 104, 318-323. DOI: https://doi.org/10.1136/bjophthalmol-2018-313706

Wong, S. T. (2018). Is pathology prepared for the adoption of artificial intelligence? Cancer Cytopathol, 126, 373-375. DOI: https://doi.org/10.1002/cncy.21994

Xu, H., Berendt, R., Jha, N., Mandal, M. (2017). Automatic measurement of melanoma depth of invasion in skin histopathological images. Micron., 97, 56-67. DOI: https://doi.org/10.1016/j.micron.2017.03.004

Xu, H., Lu, C., Berendt, R., Jha, N., Manda,l M. (2018). Automated analysis and classification of melanocytic tumor on skin whole slide images. Comput. Med. Imaging. Graph., 66, 124-134. DOI: https://doi.org/10.1016/j.compmedimag.2018.01.008

Published

2023-05-26

How to Cite

Dudin, O. Y. (2023). DIGITAL PATHOLOGY IN MELANOMA: ACHIEVEMENTS, BARRIERS AND PROSPECTS. Medical Informatics and Engineering, (4), 9–20. https://doi.org/10.11603/mie.1996-1960.2022.4.13411

Issue

Section

Articles