THE LOGIC OF DETERMINING THE HEALTH OF THE INDIVIDUAL AND THE POPULATION. PART 2. EVOLUTIONARY MEDICINE. SYSTEM-BIOLOGICAL AND INFORMATIONAL ASPECTS OF HUMAN HEALTH

Authors

DOI:

https://doi.org/10.11603/mie.1996-1960.2021.3-4.12637

Abstract

Background. The issues of integration of key issues of evolutionary medicine and valeology are considered. The aim of the research is to determine the ways of synthesis of classical ideas about the health of the individual with the concepts of evolutionary medicine and tools for reflecting the problems of individual health with the help of information technology.

Materials and methods. Results. Evolutionary medicine shifts the emphasis from the dichotomous consideration of health and disease to a more contextual consideration. The need for a transdisciplinary synthesis of human health disciplines is emphasized. A virtual service program for monitoring the state of human health has been created, which makes it possible to register all changes in the state of health throughout his life and to promote the timely correction of pathological changes. The platform is the real embodiment of the well-known truth — it is easier to prevent a disease than to cure it. The question of whether evolutionary medicine is a fundamental science — an important worldview of generalizing health problems and diseases — remains.

Conclusions. Applying an evolutionary perspective to clinical practice, while not influencing everyday therapeutic decisions, can lead to new clinical strategies. However, clinical medicine and public health focus primarily on the etiology, prevention and treatment of disease, and only then on health promotion. This discrepancy is the reason that doctors do not always place the right emphasis in different forms of their activities.

References

Anisimov, V. N. (2003). Molekulyarnye i fiziolo-gicheskie mekhanizmy stareniya [Molecular and physiological mechanisms of aging]. Saint Petersburg: Nauka (Science).

Artemov, A. V. & Buryachkovsky, E. S. (2016). Starenie: razlichiya mezhdu smert'yu kletki i smert'yu organizma s pozitsii matematicheskoi modeli [Distinction between death and organism cells from the positions of the mathematical model]. Ukrainskii zhurnal meditsiny, biologii i sporta (Ukrainian journal of medicine, biology and sport), 3 (1), 215-220. doi: 10.26693/jmbs03.01.215.

Voitenko, V. P. (1987). Matematicheskoe modelirovanie v gerontologii [Mathematical modeling in gerontology]. Gerontologiya i geriatriya (Gerontology and Geriatrics): annual. Immunitet i starenie (Immunity and Aging). Digest. Kyiv, P. 118-130.

Voropaeva, E. F., Shokin, Yu. N., Nepomnyash-chikh, L. M., & Senchukova, S. R. (2014). Matematicheskoe modelirovanie funktsionirovaniya sistemy belkov p53-MDM2 [Mathematical modeling of functioning of the p53-Mdm2 protein system]. Byulleten' ehksperimental'noi biologii i meditsiny (Bull. Exp. Biol. Med.), 157 (2), 291-294. doi: 10.1007/s10517-014-2548-3.

Galitskii, V. A. (2009). Ehpigeneticheskaya priroda stareniya [The epigenetic nature of aging]. Tsitologiya (Cytology), 51 (2), 388-397.

Gerasimenko, N. D., Degtyar', N. I., Rasin, M. S. (2016). Sistemnoe vospalenie i starenie: rol' yadernykh transkriptsionnykh faktorov terapevticheskoi vozmozhnosti [Systemic inflammation and aging: the role of nuclear transcription factors in therapeutic potential]. Problemy stareniya i dolgoletiya (Aging and Longevity), 25 (4), 554-561.

Dontsov, V. I. (2006). Metodologiya sushchnostnogo modelirovaniya stareniya i ryad modelei, postroennykh s ee pomoshch'yu [Essential aging modeling methodology and a number of models built with its help]. Trudy ISA RAN (Proceedings of ISA RAS), 19, 94-116.

Krut'ko, V. M., Dontsov, V. I. (2008). Sistemnye mekhanizmy i modeli stareniya [Systemic mechanisms and aging patterns]. Moscow, URSS Rgess.

West G. B., Bergman A. Toward a system biology framework for understanding aging and health span // J. Gerontol. A. Biol. Sci. Med. Sci. - 2009. -Vol. 64 (2). - P. 205-208.

Williams G. C., Nesse R. M. The dawn of Darwinian medicine // Q. Rev Biol. - 1991. - Vol. 66 (1). -P. 1-22.

Mintser, O. P., Zaliskyi, V. M. (2019). Systemna biomedytsyna [Systemic biomedicine]. Vol. 1. Kyiv, Interservis.

Mikheev, A. N. (2014). Problemy teorii biologicheskoi ehvolyutsii (Prolegomeny ehvolyutsionistiki) [Problems of the theory of biological evolution (Prolegomena of evolutionism)]. Kyiv, Fitotsentr (Phytocenter).

Novosel'tsev, V. N., Novosel'tseva, Zh. A., Iashin, I. (2003). Matematicheskoe modelirovanie v gerontologii — strategicheskie perspektivy [Mathematical modeling in gerontology — strategic perspectives]. Uspekhi gerontologii (Advances in Gerontology), 12, 149-165.

Khalyavkin, A. V., Krut'ko, V. M. (2006). Podkhod k modelirovaniyu stareniya s pozitsii biofiziki slozhnykh system [An approach to modeling aging from the standpoint of biophysics of complex systems]. Trudy ISA RAN (Proceedings of ISA RAS), 19, 117-155.

AAMC-HHMI. Scientific Foundation for Future Physicians Committee. Scientific Foundations for Future Physicians. Washington, DC: American Association of Medical Colleges and Howard Hughes Medical Institute; 2009.

Proctor, C. J., Macdonald, C., Milner, J. M., Rowan, A, D., & Cawston, T. E. (2014). A computer simulation approach to assessing therapeutic intervention points for the prevention of cytokine-induced cartilage breakdown. Arthritis Rheumatol., 66 (4), 979-989. doi: 10.1002/art.38297.

Picca, A., Pesce, V., Fracasso, F., Joseph, A.-M., Leeuwenburgh, C., & Lezza, A. M. S. (2013). Aging and calorie restriction oppositely affect mitochondrial biogenesis through TFAM binding at both origins of mitochondrial DNA replication in rat liver. PLoS ONE, 8 (9), e74644. doi: 10.1371/journal.pone.0074644.

Sighania, R., Sramkoski, R. M., Jacobberger, J. W.. & Tyson, J. J. (2011). A hybrid model of mammalian cell cycle regulation. PLoS Comput. Biol., 7 (2), e1001077. doi: 10.1371/journal.pcbi.1001077.

Akey, J. M. (2009). Constructing genomic maps of positive selection in humans: where do we go from here? Genome Res., 19 (5), 711-722. doi: 10.1101/ gr.086652.108.

Curtius, K., Wong, C.,J., Hazelton, W. B., Kaz, A. M., Chak, A., Willis, J. E. ... Luebeck, E. G. (2016). A molecular clock inters heterogeneous tissue age accusing patients with Barrett's esophagus. Plos. One, 12 (5), e1004919. doi: 10.1371/journal.pcbi.1004919.

A new vision for old age. Rethinking health policy for Europe's ageing society. A report from the Economist Intelligence Unit // The Economist Intelligence Unit Limited. 2012. 4. https://www.learneurope.eu/ files/5613/7525/7796/Repensando_la_poltica_de_ salud_sociedad_europea_envejecida.pdf.

Gauthier, L. D., Greenstein, J. L., O'Rourke, B., & Winslow, R. L. (2013). An integrated mitochondrial ROS production and scavenging model: implications for heart failure. Biophys. J., 105 (12), 2832-2842. doi: 10.1016/j.bpj.2013.11.007.

Krause, F., Ulendorf, J., Lubitz, T., Schulz, M., Klipp, E., & Liebermeister, W. (2010). Annotation and merging of SBML models with semantic SBML. Bioinformatics, 26 (3), 421-428. doi: 10.1093/ bioinformatics/btp642.

Aschner, Y. & Downey, G. P. (2016). Transforming growth factor-^: master regulator of the respiratory system in health and disease. Am. J. Respir. Cell Mol. Biol., 54 (5), 55-647. doi: 10.1165/rcmb.2015-0391TR.

Vagetti, G. C., Barbosa Filho, V. C., Moreira, N. B., de Oliveira, V., Mazzardo, O., de Campos W. (2014). Association between physical activity and quality of life in the elderly: a systematic review, 2000-2012. Rev. Bras. Psiquiatr, 36 (1), 76-88. doi: 10.1590/1516-4446-2012-089.5.

Govindarajn, D. R., Pencina, K. M., Raj, D. S., Massaro, J. M., Carnes, B. A., D'Agostino, R. B. (2014). A system analysis of age-related changes in some cardiac aging traits. Biogerontology, 15 (2), 139-152. doi: 10.1007/s10522-013-9486-8.

Barja, G. (2014). The mitochondrial free radical theory of aging. Prog. Mol. Biol. Transl. Sci., 127, 1-27. doi: 10.1016/B978-0-12-394625-6.00001-5.

Barreiro, L. B. & Quintana-Murci, L. (2010). From evolutionary genetics to human immunology: how selection shapes host defense genes. Nat. Rev. Genet., 11 (1), 17-30. doi: 10.1038/nrg2698.

Bitto, A., Wang, A. M., Bennett, C. F., & Kaeberlein, M. (2015). Biochemical genetic pathways that modulate aging in multiple species. Cold Harbor Persp. Med., 5 (11), a025114. doi: 10.1101/ cshperspect.a025114.

Chelliah, V., Juty, N., Ajmera, J., Ali, R., Dumousseau, M., Glont, M. ... Laibe, C. (2015). BioModels: ten-year anniversary. Nucleic Acids Res., 43, D542-D548. doi: 10.1093/nar/gku1181.

Cvijovic, M., Almquist, A. J., Hagmar, J., Hohmann, S., Kaltenbach, H.-M., Klipp, E. ... Jirstrand, M. (2014). Bridging the gaps in system biology. Mol. Genet. Genomics, 289 (5), 727-734. doi: 10.1007/ s00438-014-0843-3.

Sutterlin, T., Kolb, C., Dickhaus, H., Jager, D.. & Grabe, N. (2013). Bridging the scale: semantic integration of quantitable SBML in graphical multi-cellular models and simulation with EPISM and COPASI. Bioinformatics, 29 (2), 223-229. doi: 10.1093/bioinformatics/bts659.

Budanov, A. V. & Karin, M. (2008). p53 target genes sestrin 1 and sestrin 2 connect genotoxic stress and mTOR signaling. Cell, 134 (3), 451-460. doi: 10.1016/j.cell.2008.06.028.

Carrol, B., Hewitt, G., & Korolchuk, V. I. (2013). Autophagy and ageing: implications for age-related neurodegenerative diseases. Essays Biochem., 55, 119-131. doi: 10.1042/bse0550119.

Cheong, J. K., Zhang, F., Chua P. J., Bay, B. H., Thorburn, A., & Virshup, D. M. (2015). Casein kinase 1a-dependent feedback loop controls autophagy in RAS-driven cancer. J. Clin. Invest., 125 (4), 14011418. doi: 10.1172/JCI78018.

Chen, D. & Guarente, L. (2007). SIR 2: a potential target for calorie restriction mimetics. Trends. Mol. Med., 13 (2), 64-71. doi: 10.1016/j.molmed.2006.12.004.

Tishkoff, S. A., Reed, F. A., Ranciaro, A., Voight, B. F., Babbitt, C. C., Silverman, J. S., ... Deloukas, P. (2007). Convergent adaptation of human lactase persistence in Africa and Europe. Nature Genetics, 39 (1), 31-40. doi: 10.1038/ng1946.

Grunspan D. Z., Nesse R. M., Barnes M. E., & Brownell, S. E. (2017). Core principles of evolutionary medicine: A Delphi study. Evol. Med. Public Health, 2018 (1), 13-23. doi: 10.1093/emph/eox025.

Corpet, A. & Stucki, M. (2014). Chromatin maintenance and dynamics in senescence: a spotlight on SAHF formation and the epigenome of senescent cells. Chromosoma, 123 (5), 423-436. doi: 10.1007/ s00412-014-0469-6.

Cybulski, M., Krajewska-Kulak, E., & Jamiolkowski, J. (2015). Preferred health behaviors and quality of life of the elderly people in Poland. Clin. Interv. Aging, 10, 1555-1564. doi: 10.2147/CIA.S92650.

Crespi, B. J. (2010). The emergence of human-evolutionary medical genomics. Evolutionary Applications, 4 (2), 292-314. doi: 10.1111/j.1752-4571.2010.00156.

Tomaru, U., Takahashi, S., Ishiru, A. Miyatake, Y., Gohda, A., Suzuki, S. ... Kasahara, M. (2012). Decreased proteasomal activity causes age-related phenotypes and promotes the development of metabolic abnormalities. Am. J. Pathol., 180 (3), 963-972. doi: 10.1016/j.ajpath.2011.11.012.

Cohen, A. A., Milot, E., Li, Q., Bergeron, P., Poirier, R., Dusseault-Belanger, F. ... Ferrucci, L. (2015). Detection of a novel, integrative aging process suggest complex physiological integration. PLoS One, 10 (3), e0116489. doi: 10.1371/journal.pone.0116489.

Dinsdale, N., Nepomnaschy, P., & Crespi, B. (2021). The evolutionary biology of endometriosis. Evol. Med Pub. Health, 9 (1), 174-191. doi: 10.1093/emph/ eoab008.

Maslov, A. Y., Ganapathi, S., Westerhof, M., Quispe-Tintaya, W., White, R. R., Van Houten, B. ... Vijg, J. (2013). DNA damage innormally and prematurely aged mice. Aging Cell, 12 (3), 467-477. doi: 10.1111/ acel.12071.

Murray, P. J., Cornelissen, B., Vallis, K. A., & Chapman, S. J. (2016). DNA double-strand break repair: a theoretical framework and its applications. J. R. Soc. Interfase, 13 (114), 20150679. doi: 10.1098/ rsif.2015.0679.

Dalle Pezze, P., Nelson, G., Otten, E. G., Korolchuk, V. I., Kirkwood, T. B. L., von Zglinicki, T., & Shanley, D. P. (2014). Dynamic modeling of pathways to cellular senescence reveals strategies for targeted intervention. PloS. Comput. Biol., 10 (8), e1003728.

Tavassoly, I., Parmar, J., Shajahan-Hag, A. N., Clarke, R., Baumann, W. T.. & Tyson, J. J. (2015). Dynamic modeling of the interaction between autophagy and apoptosis in mammalian cells. CPT Pharmacometrics Drug Pharmacol., 4 (4), 263-272. doi: 10.1002/ psp4.29.

Efeyan, A., Zoncu, R., & Sabatini, D. H. (2016). Amino acids and mTORC1: from lysosomes to disease. Trends Mol. Cell Biol., 18 (9), 33-524. doi: 10.1016/j. molmed.2012.05.007.

Hoftman J. M., Soltow Q. A., Li S., Sidik, A., Jones, D. P., Promislow, D. E. L. (2014). Effects of age, sex, and genotype on gene-sensitivity metabolomic profiles in the bruit fry, Drosophila melanogaster. Aging Cell., 13 (4), 596-604. doi: 10.1111/acel.12215.

Eurostat Statistics Explained. Available at: http://ec.europa.eu/eurostat/statistics-explained/index.php/ Fertility_statistics#Main_statistical_findings.

Passos, J. F., Nelson, G., Wang, C., Richter, T., Simillion, C., Proctor, C. J. ... von Zglinicki T. (2010). Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol., 6, 347. doi: 10.1038/msb.2010.5.

Fogel, R. W. The escape from hunger and premature death, 1700-2100: Europe, America and the Third World. Cambridge: Cambridge University Press; 2004.

Crider K. S., Yang T. P., Berry R. J., & Bailey, L. B. (2012). Folate and DNA methylation: a review of molecular mechanism and the evidence for folates role. Adv. Nutr., 3 (1), 21-38. doi: 10.3945/ an.111.000992.

Garcia-Martinez, J. M. & Alessi, D. R. (2008). mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum and glucocorticoid-induced protein kinase 1 (SGK 1). Biochem J., 416 (3), 375-385. doi: 10.1042/ BJ20081668.

Halverson M. S. & Bolnick D. A. (2008). An ancient DNA test of a founder effect in Native American ABO blood group frequencies. Am. J. Phys. Anthropol., 137 (3), 342-347. doi: 10.1002/ajpa.20887.

Mendias, C. L., Bakhurin, K. I., Gumucio, J. P., Shallal-Ayzin, M. V., Davis, C. S., & Faulkner, J. A. (2015). Haploinsufficiency of myostatin protects against aging-related declines in muscle function and enhances. Aging Cell., 14 (4), 704-706. doi: 10.1111/ acel.12339.

Herskovitz A. Z. & Guarente L. (2014). SIRT1 in neurodevelopment and brain senescence. Neuron, 81 (3), 471-483. doi: 10.1016/j.neuron.2014.01.028.

Hill S. M., Hanzen S., & Nystrom T. (2017). Restricted access: spatial sequestration of damage proteins during stress and aging. EMBO Rep., 18 (3), 377-391. doi: 10.15252/embr.201643458.

Gluckman, P. D., Low, F. M., Buklijas, T., Hanson, M. A., & Beedle, A. S. (2011). How evolutionary principles improve the understanding of human health and disease. Evol. Appl., 4 (2), 249-263. doi:10.1111/j.1752-4571. 2010.00164.

Brannmark, C., Nyman, E., Fagerholm, S., Bergenholm, L., Ekstrand, E.-M., Cedersund, G., & Stralfors, P. (2013). Insulin signaling in type 2 diabetes: experimental and modeling analyses reveal mechanisms of insulin resistance in human adipocytes. J. Biol. Chem, 288 (14), 9867-9880. doi: 10.1074/ jbc.M112.432062.

Dolan, D., Zupanic, A., Nelson, G., Hall, P., Miwa, S., Kirkwood, T. B. L., & Shanley, D. P. (2015). Integrated stochastic model of DNA damage repair by Non-homologous end joining and p53/p21-mediated early senescence signaling. PloS Compat. Biol., 11 (5), e1004246. doi: 10.1371/journal.pcbi.1004246.

Jablonka E. & Raz G. (2009). Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Quart. Rev. Biol., 84 (2), 131-176. doi: 10.1086/598822.

Kaplan, H. S. & Robson, A. J. (2009). We age because we grow. Proceedings of the Royal Society B — Biological Sciences, 276 (1663), 1837-1844. doi: 10.1098/rspb.2008.1831.

Keywords and concepts in evolutionary developmental biology. Eds: Hall, B, K. & Olson, W. M. New Delhi, India: Discovery Publishing House, 2007.

Kirkwood, T. B. (1977). Evolution of ageing. Nature, 270, 301-304.

Kirkwood, T. B. (2011). Systems biology of ageing and longevity. Philos. Trans. R. So. Lond. B. Biol. Sci., 366 (1561), 64-70. doi: 10.1098/rstb.2010.0275.

Kirkwood, T. B. (2005). Understanding the odd science of aging. Cell, 120 (4), 437-447. doi: 10.1016/j. cell.2005.01.027.

Kirkwood, T. B. L., Proctor, C. J. (2003). Somatic mutations and ageing in silico. Mech. Ageing Dev., 124 (1), 85-92. doi: 10.1016/s0047-6374(02)00177-x.

Kirkwood, T. B. L. (2017). Why and how are we living longer? Exp. Physiol., 102 (9), 1067-1074. doi: 10.1113/EP086205.

Kitano, H. (2007). Towards a theory of biological robustness. Mol. Syst. Biol., 3, 137. doi: 10.1038/ msb4100179.

Goetz, R., Ohnishi, M., Ding, X., Kurosu, H., Wang, L., Akiyoshi, J. ... Mohammadi, M. (2012). Klotho co receptors inhibit signaling by paracrine fibroblast growth factor 8 subfamily ligands. Mol. Cell. Biol., 32 (10), 1944-1954. doi: 10.1128/MCB.06603-11.

Kowald, A., & Kirkwood, T. B. (2000). Accumulation of defective mitochondria through delayed degradation of damaged organelles and its possible role in the ageing of post-mitotic and dividing cells. J. Theor. Biol., 202 (2), 145-160. doi: 10.1006/jtbi.1999.1046.

Kowald, A., Kirkwood, T. B. (1996). A network theory of aging: the interactions of defective mitochondria, aberrant proteins, free radicals and scavengers in the aging process. Mutat. Res., 316 (5-6), 209-236. doi: 10.1016/s0921-8734(96)90005-3.

Kowald, A., & Klipp, E. (2014). Mathematical models of mitochondrial aging and dynamics. Prog. Mol. Biol. Transl. Sci., 127, 63-92. doi: 10.1016/B978-0-12-394625-6.00003-9.

Kriete, A., Bost, W. J., & Booker, G. (2010). Rule- based cell systems model of aging using feedback loop motifs mediated by stress responses. PLoS Comput. Biol., 6 (6), e1000820. doi: 10.1371/journal. pcbi.1000820.

Kriete, A. (2013). Robustness and aging — a systems level perspective. Biosystems, 112 (1), 37-48. doi: 10.1016/j.biosystems.2013.03.014.

Labbadia, J., & Morimoto, R. I. (2015). The biology of proteostasis in aging and disease. Annu Rev. Biochem., 84, 435-464. doi: 10.1146/annurev-biochem-060614-033955.

Laland, K. N., Odling-Smee, J., & Myles, S. (2010). How culture shaped the human genome: bringing genetics and the human sciences together. Nat. Rev. Genet., 11, 137-148.

Lai, X., Wolkenhauer, O., & Vera, J. (2012). Modeling miRNA regulation in cancer signaling system: miR-34a regulation of the p53/Sirt1 signaling module. Methods Mol. Biol., 880, 87-108. doi: 10.1007/978-1-61779-833-7_6.

Lai, X., Wolkenhauer, O., & Vera, J. (2016). Understanding microRNA-mediated gene regulatory networks through mathematical modeling. Nucleic Acids Res., 44 (13), 6019-6035. doi: 10.1093/nar/ gkw550.

Lee, R. D. (2003). Rethinking the evolutionary theory of aging: Transfers, not births, shape senescence in social species. PNAS, 100 (16), 9637-9642. doi: 10.1073/ pnas.1530303100.

Somogyi, E. T., Bouteiller, J. M., Glazier, J. A., Konig, M., Medley, J. K., Swat, M. H.. & Sauro, H. M. (2015). libRoadRunner: a high performance SBML simulation and analysis library. Bioinformatics, 31 (20), 33153321. doi: 10.1093/bioinformatics/btv363.

Lipsitz, L. A., & Goldberger, A. L. (1992). Loss of 'complexity' and aging. Potential applications of fractals and chaos theory to senescence. JAMA, 267 (13), 1806-1809.

Marin-Garcia, J. (2016). Mitochondrial DNA repair: a novel therapeutic target for heart failure. Heart Fail. Rev., 21 (5), 87-475. doi: 10.1007/s10741-016-9543-x.

Mc Govern A. P., Powell B. E., & Chevassut T. J. (2012). A dynamic multi-compartmental model of DNA methylation with demonstrable predictive value in hematological malignancies. J. Theor. Biol., 310, 14-20. doi: 10.1016/j.jtbi.2012.06.018.

Medvedev, Z. A. (1990). An attempt at a rational classification of theories of ageing. Biol. Rev. Camb. Philos. Soc., 65 (3), 375-398. doi: 10.1111/j.1469-185x.1990.tb01428.x.

Miwa, S., Lawiess, C., & von Zglinicki T. (2008). Mitochondrial turnover in liver is fast in vivo sound is accelerated by dietary restriction: application of a simple dynamic model. Aging Cell., 7 (6), 920-923. doi: 10.1111/j.1474-9726.2008.00426.

Proctor, C. J., Sotiv, C., Boys, R. J., Gillespie, C. S., Shanley, D. P., Wilkinson, D. J., & Kirkwood, T. B. L. (2005). Modelling the actions of chaperones and their rake in ageing. Mech. Ageing Dev., 126 (1), 119-131. doi: 10.1016/j.mad.2004.09.031.

Mooney, K. M., Morgan, A. E., & Mc Auley, M. T. (2016). Aging and computational system biology. Wiley Interdiscip. Rev. Syst. Biol. Med., 8 (2), 123-139. doi: 10.1002/wsbm.1328.

Mc Auley, M. T., Martinez Guimere, A., Hodson, D., Mcdonald, N., Mooney, K. M., Morgan, A. E., & Proctor, C. J. (2017). Modelling the molecular mechanisms of aging. Biosci. Rep., 37 (1), BSR 20160177. doi: 10.1042/BSR20160177.

Neel, J. V. (1962). Diabetes mellitus: a "thrifty" genotype rendered detrimental by "progress"? Am. J. Hum. Genet., 14 (4), 353-362.

Nesse, R. M. (2018). Tinbergen's four questions. Two proximate, two evolutionary. Evol. Med. Pub. Health, 2019 (1), 2 doi:10.1093/emph/eoy035.

Tilstra, J. S., Tilstra, J. S., Clanson, C. L., Niedernhofer, L. J.. & Robbins, P. D. (2011). NF-Kb in aging and disease. Aging Dis., 2 (6), 449-465.

Fang, E. F., Scheibye-Knudsen, M., Chua, K. F., Mattson, M. P., Croteau, D. L., & Bohr, V. A. (2016). Nuclear DNA damage signaling to mitochondria in ageing. Nat. Rev. Mol. Cell Biol., 17 (5), 308-321. doi: 10.1038/nrm.2016.14.

Geva-Zatorsky, N., Rosenfeld, N., Itzkovitz, S., Milo, R., Sigal, A., Dekel, E., . Alon, U. (2006). Oscillations and variability in the p53 system. Mol. Syst. Biol., 2, 2006.0033. doi: 10.1038/msb4100068.

Pall, M. L., & Leine, S. (2015). Nrf 2, a master of detoxification and antioxidant, anti-inflammatory and other cytoprotective mechanisms in raised by health promoting factors. Sheng Li Xue Bao, 67 (1), 1-18.

Pearson, C. A. B., Zeng, C., & Simha, R. (2013). Network class superposition analysis. PLoS One, 8 (4), e59046. doi:10.1371/journal.pone.0059046.

Peltonen, L., Jalanko, A., & Varilo, T. (1999). Molecular genetics of the Finnish disease heritage. Human Molecular Genetics, 8 (10), 1913-1923. doi: 10.1093/ hmg/8.10.1913.

Perkiomaki, J. S., Makkikallio, T. H., & Hyikuri, H. V. (2015). Fractal and complexity measures of heart rate. Clin. Exp., 27 (2-3), 149-158.

Laberge, A. M., Michaud, J., Richter, A., Lemyre, E., Lambert, M., Brais, B., Mitchell, G. A. (2005). Population history and its impact on medical genetics in Quebec. Clinical Genetics, 68 (4), 287-301. doi: 10.1111/j.1399-0004.2005.00497.

Lee, Y. H., Lee, N. H., Bhattarai, G., Yun, J.-S., Kim, T.-I., Jhee, E.-C., Yi, H.-K. (2010). PPARy inhibits inflammatory reaction in oxidative stress induced human diploid fibroblast. Cell. Biochem. Funct., 28 (6), 490-496. doi: 10.1002/cbf.1681.

Proctor, C. J., & Kirkwood, T. B. (2003). Modelling cellular senescence as a result of telomere state. Aging Cell, 2 (3), 151-157. doi: 10.1046/j.1474-9728.2003.00050.

Proctor, C. J., & Lorimer, I. A. (2011). Modelling the role of the Hsp 70/Hsp 90 system in the maintenance of protein homeostasis. PLoS One., 6 (7), e22038. doi: 10.1371/journal.pone.0022038.

Chondrogianni, N., Petropoulos, I., Grimm, S. Georgila, K., Catalgol, B., Friguet, B. . Gonos, E. S. (2014). Protein damage, repair and proteolysis. Mol. Aspects Med., 35, 1-71. doi: 10.1016/j.mam.2012.09.001.

Przybilla, J., Rohef, T., Loeffeer, J.. & Galle, J. (2014). Understanding epigenetic changes in aging stem cells — a computational model approach. Aging Cell., 13 (2), 320-328. doi: 10.1111/acel.12177.

Ramasamy, R., Shekhtman, A.. & Schmid,t A. M. (2016). The multiple faces of RAGE — opportunities for therapeutic intervention in aging and chronic disease. Expert Opin. Ther. Targets, 20 (4), 431-446. doi: 10.1517/14728222.2016.1111873.

Rattan, S. I. (2008). Hormesis in aging. Ageing Res. Rev., 7 (1), 63-78. doi: 10.1016/j.arr.2007.03.002.

Wagner, K. D., Wagner, N., Ghanbarian, H., Grandjean, V., Gounon, P., Cuzin, F.. & Rassoulzadegan, M. (2008). RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse. Developmental Cell, 14 (6), 962-969. doi: 10.1016/j.devcel.2008.03.009.

Rubinsztein, D. C., Marifio, G.. & Kroemer, G. (2011). Autophagy and aging. Cell, 146 (5), 682-695. doi: 10.1016/j.cell.2011.07.030.

Biteau, B., Karpas, J., Hwangbo, D., & Jasper, H. (2011). Regulation of Drosophila lifespan by JNK signaling. Exp. Gerontol., 46 (5), 349-354. doi: 10.1016/j.exger.2010.11.003.

Schulz, M., Uhlendorf, J., Klipp, E.. & Liebermeister, W. (2006). SBMLmerge, a system for combining biochemical network models. Genome Inform., 17 (1), 62-71.

Peng, L., Yuan, Z., Ling, H., Fukasawa, K., Robertson, K., Olashaw, N. ... Seto, E. (2011). SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters its activities. Mol. Cell Biol., 31 (23), 47204734.

Mao, Z., Hine, C., Tian, X., Van Meter, M., Au, M., Vaidya, A., ... Gorbunova, V. (2011). SIRT6 promotes DNA repair under stress by activating. Science, 332 (6036), 1443-1446. doi: 10.1126/science.1202723.

Solovyeva, I. A., Dobrovolskaya, E. V.. & Moskalev, A. A. (2016). Genetic control of circadian rhythms and aging. Russ. J. Genet., 52 (4), 343-361.

Soltow, Q. A., Jones, D. P.. & Promislow, D. E. (2010). A network perspective on metabolism and aging. Integr. Comp. Biol., 50 (5), 844-854. doi: 10.1093/ icb/icq094.

Song, R., Sarnoski, E. A.. & Acar, M. (2018). The system biology of single all aging. Science, 7, 157169. doi: 10.1016/j.isci.2018.08.023.

Sosou, P. D.. & Kirkwood, T. B. L. (2001). A stochastic model of cell replicative senescence based on telomere shortening oxidative stress, a somatic mutation in nuclear and mitochondrial DNA. J. Theor. Biol., 213 (4), 573-586. doi: 10.1006/jtbi.2001.2432.

Swan, M. Philosophy of big data. Expanding the human-data relation with big data science services. https://www.melanieswan.com/documents/ Philosophy_of_Big_Data_SWAN.pdf.

Dolan D., Melson G., Zupanic A., Smith, G., & Shanley, D. (2013). System modeling of NHEJ reveals the importance of redox regulation of Ku 70/80 in the dynamics of the DNA damage foci. PLoS One, 8 (2), e55190. doi: 10.1371/journal.pone.0055190.

Martinez Guimera, A., Welsh, C., Dalle Pezze, P. Fullard, N., Nelson, G., Roger, M. F. ... Shanley, D. P. (2017). Systems modelling ageing: from single senescent cells to simple multi-cellular models. Essays Biochem., 61 (3), 369-377. doi: 10.1042/ EBC20160087.

Khan, M. H., Ligon, M., Hussey, L. R., Hufnal, B., Farber, R. 2nd, Munkacsy, E. ... Rea, S. L. (2013). TAF-4 is required for the life extension of isp-1cek-1 and tpk-1 Mit mutants. Aging, 5 (10), 741-758. doi: 10.18632/aging.100604.

Tan, V. P.. & Miyamoto, S. (2016). Nutrient sensing mTORC1: integration of metabolic and autophagic signals. J. Mol. Cell Cardiol., 95, 31-41. doi: 10.1016/j.yjmcc.2016.01.005.

Tan, Z. (1999). Telomere shortening and the population size-dependency of life span of human cell culture. Exp. Gerontol., 34 (7), 831-842. doi: 10.1016/s0531-5565(99)00056-x.

Andres, A. M., Hubisz, M. J., Indap, A., Torgerson, D. G., Degenhardt, J. D., Boyko, A. R. ... Nielsen, R. (2009). Targets of balancing selection in the human genome. Molecular Biology & Evolution, 26 (12), 2755-2764. doi: 10.1093/molbev/msp190.

Bar, C., Bernardes de Jesus, B., Serrano, R., Tejera, A., Ayuso, E., Jimenez, V. . Blasco, M. A. (2014). Telomerase expression confers cardioprotection in the adult mouse heart after acute myocardial infarction. Nat. Commun., 5, 5863. doi: 10.1038/ncomms6863.

Costacou, T., Zgibor, J. C., Evans, R. W., Otvos, J., Lopes-Virella, M. F., Tracy, R. P., & Orchard, T. J. (2005). The prospective association between adiponectin and coronary artery disease among individuals with type 1 diabetes. The Pittsburgh Epidemiology of Diabetes Complications Study. Diabetologia, 48 (1), 41-48. doi: 10.1007/s00125-004-1597-y.

Goitre, L., Trapani, E., Trabalzini, L., Retta, S. F. (2014). The Ras superfamily of small GTPases: the unlocked secret. Meth. Mol. Biol., 1120, 1-18. doi: 10.1007/978-1-62703-791-4_1.

Junnila R. K., List E. O., Berryman D. E. Murrey, J. W., & Kopchick, J. J. (2013). The GH/IGF-1 axis in ageing and longevity. Nat. Rev. Endocrinol., 9 (6), 366-376. doi: 10.1038/nrendo.2013.67.

Knapik A., Brz^k A., Famula-W^z A., Gallert-Kopyto, W., Szydlak, D., Marcisz, C., & Plinta R. (2019). The relationship between physical fitness and health self-assessment in elderly. Medicine (Baltimore), 98 (25), e15984. doi:10.1097/MD.0000000000015984.

Van Deursen, J. M. (2014). The role of senescent cells in aging. Nature, 509 (7501), 439-446.

Wensink, M. J., Wrycza, T. F.. & Bandisch, A. (2014). No senescence despite declining selection pressure: Hammilton's result in broader perspective. J. Theor. Biol., 347, 176-181. doi: 10.1016/j.jtbi.2013.11.016.

West, G. B.. & Bergman, A. (2009). Toward a system biology framework for understanding aging and health span. J. Gerontol. A. Biol. Sci. Med. Sci., 64 (2), 205208. doi: 10.1093/gerona/gln066.

Williams, G. C. & Nesse, R. M. (1991). The dawn of Darwinian medicine. Q. Rev Biol., 66 (1), 1-22. doi: 10.1086/417048.

Published

2022-02-17

How to Cite

Mintser, O. P., & Novyk, A. M. (2022). THE LOGIC OF DETERMINING THE HEALTH OF THE INDIVIDUAL AND THE POPULATION. PART 2. EVOLUTIONARY MEDICINE. SYSTEM-BIOLOGICAL AND INFORMATIONAL ASPECTS OF HUMAN HEALTH. Medical Informatics and Engineering, (3-4), 4–27. https://doi.org/10.11603/mie.1996-1960.2021.3-4.12637

Issue

Section

Articles