GENERATION OF SELF-ORGANIZATION AND SELF-ASSEMBLY PROCESSES IN BIOLOGICAL TISSUE ENGINEERING AND REGENERATIVE MEDICINE

Authors

  • O. P. Mintser Shupyk National Medical Academy of Postgraduate Education https://orcid.org/0000-0002-7224-4886
  • V. M. Zaliskyi Shupyk National Medical Academy of Postgraduate Education
  • L. Yu. Babintseva Shupyk National Medical Academy of Postgraduate Education

DOI:

https://doi.org/10.11603/mie.1996-1960.2019.3.10431

Keywords:

self-organization, self-assembling, tissue engineering, tissue engineering platforms, bone, cardiovascular, liver and corneal tissues

Abstract

Background. An analytical study examines the processes of self-organization and self-assembly as processes of frameless tissue engineering. The characteristics and advantages of each process are described, and key examples of fabrics created using these processes on the basis of frameless tissue-engineering platforms are considered in order to outline recommendations for future tissue engineering developments in the clinic.

Purpose. The purpose of this review is to integration of achievements in the field of frameless tissue engineering, primarily associated with self-organization and the process of self-assembly.

Results. Materials and methods. It is postulated that one of the most promising areas of research is the self-assembly process, which leads to the formation of functional tissue in a cellular way that does not require external energy input. At the same time, the justification and identification of the system of complex tissue formation optimal by a given criterion — free from a scaffold or based on a scaffold — is a non-trivial task of combining various systems and independent cell types.

Conclusion. One of the most promising areas of research is the self-assembly process, which leads to the formation of functional tissue in a cellular way that does not require external energy input. The justification and identification of a system of complex tissue formation optimal by a given criterion — free from a scaffold or based on a scaffold — is a non-trivial task of combining various systems and independent cell types.

References

Timchenko, A. S., Zalessky, V. N. (2018). Mezenkhimalnyye i opukholevyye stvolovyye kletki: mekhanizmy immunovospalitelnoy modulyatsii stvolovykh kletok pri personalizovannoy meditsine: Monografiya [Mesenchymal and tumor stem cells: mechanisms of immuno-inflammatory stem cell modulation in personalized medicine (Monograph)]. Kiev: Medinform. [In Russian].

Athanasion K.A., Eswaramoorthy R., Hadidi P. et al. (2013). Seff-organization and self-assembly process in tissue engineering. Annu. Rev. Biomed. Eng., 15, 115-136. DOI: https://doi.org/10.1146/annurev-bioeng-071812-152423

Baltich J., Hatch-Vallier L., Adams A.M. et al. (2010). Development of scaffoldless three-dimensional engineered nerve using a nerve fibroblast co-culture. In Vitro Cell Dev. Biol. Anum., 46, 438-444. DOI: https://doi.org/10.1007/s11626-009-9260-z

Brown W. E., Huang B. J., Keown T., Hu J. C., Athanasion K. A. (2018). Overcoming Challenges in engineering large, scaffold-free neocartilage with functional properties. Tissue Eng. Part A., 24 (21-22), 1652-1662.

Bollini, S., Silini, A. R., Banerjee, A. et al. (2018). Cardiac restoration stemming from the placenta tree: Insights from fetal and perinatal cell biology. Front Physiol., 9, 385. DOI: https://doi.org/10.3389/fphys.2018.00385

Calve, S., Lytle, I. F., Grosh, K. et al. (2010). Implantation increases tensile strength and collagen content of self-assembled tendon constructs. J. Appl. Physiol., 108, 875-881. DOI: https://doi.org/10.1152/japplphysiol.00921.2009

Dean, D. M., Morgan, J. R. (2008). Cytoskeletal-mediated tension modulates the directed self-assembly of microtissues. Tissue Eng. Part A., 14, 1989-1997. DOI: https://doi.org/10.1089/ten.tea.2007.0320

Discher, D. E., Janmey, P., Wang, Y. L. (2005). Tissue cells feel and respond to the stiffness of their substrate. Science, 310, 1139-1143. DOI: https://doi.org/10.1126/science.1116995

Donnelly, K., Khodabukus, A., Philp, A. et al. (2010). A novel bioreactor for stimulating skeletal muscle in vitro. Tissue Eng. Part. C. Methods, 16, 711-718. DOI: https://doi.org/10.1089/ten.tec.2009.0125

Elder, S. H., Sanders, S. W., Mc Culley, W. R. et al. (2006). Chondrocyte response to cyclic hydrostatic pressare in alginate versus pellet culture. J. Orthop. Res., 24, 740-747. DOI: https://doi.org/10.1002/jor.20086

Eiraku, M., Takata, N., Ishibashi, H. et al. (2011). Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature, 472, 51-56. DOI: https://doi.org/10.1038/nature09941

Foty, R. A., Steinberg, M. S. (2005). The differential adhesion hypothesis: a direct evaluation. Dev. Biol., 278, 255-263. DOI: https://doi.org/10.1016/j.ydbio.2004.11.012

Furukawa, K. S., Suenaga, H., Toita, K. et al. (2003). Rapid and large-scale formation of chondrocyte aggregates by rotational culture. Cell Transplant., 12, 475-479. DOI: https://doi.org/10.3727/000000003108747037

Ganvin, R., Ahsan, T., Larouche, D. et al. (2010). A novel single-step self-assembly approach for the fabrication of tissue-engineering vascular constructs. Tissue Eng. Part A, 16, 1737-1747. DOI: https://doi.org/10.1089/ten.tea.2009.0313

Ghezzi, C. E., Rnjak-Kovacina, J., Kaplan, D. L. (2015). Corneal tissue engineering: recent advance and future perspective. Tissue Eng. Part. B. Pev., 21 (3), 278-287. DOI: https://doi.org/10.1089/ten.teb.2014.0397

Griffith, M., Jackson, W. B., Lagali, N. et al. (2009). Artificial corneas: a regenerative medicine approach. Eye (Lond), 23, 1985-1989. DOI: https://doi.org/10.1038/eye.2008.409

Griffith, M., Harkin, D. G. (2014). Recent advances in the design of artificial corneas. Curr. Opin. Ophthalmol., 25 (3), 240-247. DOI: https://doi.org/10.1097/ICU.0000000000000049

Halley, J. D., Winkler, D. A. (2008). Consistent concepts of self-organization and sell-assembly. Complexity, 14, 10-17.

Haraguchi, Y., Shimizu, T., Sasagawa, T. et al. (2012). Fabrications of functional three-dimensional tissues by stocking cell sheets in vitro. Nat. Protoc., 7, 850-858. DOI: https://doi.org/10.1038/nprot.2012.027

Harris, A. K. (1976). Is cell sorting caused by differences in the work of intercellular adhesion? A critical of the Steinberg hypothesis. J. Theor. Biol., 61, 267-285. DOI: https://doi.org/10.1016/0022-5193(76)90019-9

Huang, Y. C., Dennis, R. G., Larkin, L. et al. (2005). Rapid formation of functional muscle in vitro using fibril gels. J. Appl. Physiol., 98, 706-713. DOI: https://doi.org/10.1152/japplphysiol.00273.2004

Huang, Y. C., Dennis, R. G., Baar, K. (2006). Cultured slow versus skeletal muscle cells differ in physiology and responsiveness to stimulation. Am. J. Physiol. Cell Physiol., 291:11, 17.

Jakab, K., Narotte, C., Marga, F. et al. (2010). Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication, 2, 02-2001. DOI: https://doi.org/10.1088/1758-5082/2/2/022001

Kinoshita, N., Sasai, N., Misaki, K. et al. (2008). Apical accumulation of Rho in the neural plate in important for neural plate cell shape change and neural tube formulation. Mol. Biol. Cell, 19, 2289-2299. DOI: https://doi.org/10.1091/mbc.e07-12-1286

Komae, H., Ono, M., Shimiru, T. (2008). Sell sheet-based vasenlarized myocardial tissue fabrication. Eur. Surg. Res., 59 (3-4), 276-285.

Lai, A. L., Venugopal, J. R., Navaneethan, B. et al. (2015). Biomimetic approaches for cell implantation to the restoration of infarcted myocardium. Nanomedicine (Lond), 10 (18), 2907-2930.

Lee, N., Robinson, J., Lu, H. (2016). Biomimetic strategies for engineering composite tissue. Curr. Opin. Biotechnol., 40, 64-74. DOI: https://doi.org/10.1016/j.copbio.2016.03.006

Lee, J. K., Link, J. M., Hu, J. C. Y. et al. (2017). The self-assembling process and applications in tissue engineering. Cold Spring Harb. Perspect. Med., 7 (11), a025668. DOI: https://doi.org/10.1101/cshperspect.a025668

Levy-Mishali, M., Zoldan, J., Levenberd, S. (2009). Effect of scaffold stiffness on myoblast differentiation. Tissue Engineering Part A, 15, 935-944. DOI: https://doi.org/10.1089/ten.tea.2008.0111

L'Heureux, N., Paquet, S., Labbe, R. et al. (1998). A completely biological tissue - engineered human blood vessel. FASEB J., 12, 47-56. DOI: https://doi.org/10.1096/fasebj.12.1.47

Liu, X., Ma, P. X. (2004). Polymeric scaffolds for bone tissue engineering. Annals of Bioneed. Eng., 32, 477-486. DOI: https://doi.org/10.1023/B:ABME.0000017544.36001.8e

Lovati, A. B., Botttgisio, M., Moretti, M. (2016). Decellularized and engineered tendons as biological substitutes: a critical review. Stem Cell Intern., 7276150. DOI: https://doi.org/10.1155/2016/7276150

Ma, D., Ren, L., Lin, Y. et al. (2010). Engineering scaffold-free bone tissue using bone marrow stromal cell sheets. J. Orthop. Res., 28, 697-702.

Matthyssen, S., van den Bogerd, B., Dhubhghaills, H. et al. (2018). Corneal regeneration: a review of stromal replament. Acta Biomaterials, 69, 31-41. DOI: https://doi.org/10.1016/j.actbio.2018.01.023

Mironov, V., Kasyanov, V. (2009). Emergence of clinical vascular tissue engineering. Lancet, 373, 1402-1404. DOI: https://doi.org/10.1016/S0140-6736(09)60799-6

Mironov, V., Visconti, R. P., Kasyanov, V. et al. (2009). Organ printing: tissue spheroids as building blocks. Biomaterials, 30, 2164-2174. DOI: https://doi.org/10.1016/j.biomaterials.2008.12.084

Nishida, K., Yamato, M., Hayashida, Y. et al. (2004). Corneal reconstruction with tissue-engineered cell sheet composed of autologous oral mucosal epithelium. N. Engl. J. Med., 351, 1187-1196. DOI: https://doi.org/10.1056/NEJMoa040455

Norotte, C., Marga, F. S., Niklason, L. E. et al. (2009). Scaffold-free vascular tissue engineering using bioprinting. Biomaterial, 30, 5910-5917. DOI: https://doi.org/10.1016/j.biomaterials.2009.06.034

Ofek, G., Revell, C. M., Hu, J. C. et al. (2008). Matrix development in sell-assembly of articular cartilage. PLoS One, 3, e2795. DOI: https://doi.org/10.1371/journal.pone.0002795

Paez-mayorga, J., Hemander-Varguas, C., Ruir-Esparra, G. U. et al. (2019). Bioreactors for cardiac tissue engineering. Adv. Healthc. Mater., 8 (7), e1701504. DOI: https://doi.org/10.1002/adhm.201701504

Paxton, J. Z., Grover, L. M., Baar, K. (2010). Engineeering an in vitro model of a functional ligament from bone. Tissue Eng. Part A, 16, 3515-3525. DOI: https://doi.org/10.1089/ten.tea.2010.0039

Peck, M., Gebhart, D., Dusserre, N. et al. (2012). The evolution of vascular tissue engineering and current state of the art. Cells Tissues Organs, 195, 144-158. DOI: https://doi.org/10.1159/000331406

Perez-Pomares, J. M., Foty, R. A. (2006). Tissue fusion and cell sorting in embryonic development and disease: biomedical application. BioEssays, 28, 809-821. DOI: https://doi.org/10.1002/bies.20442

Pillai, D. S., Dhinsa, B. S., Khan, W. S. (2017). Tissue engineering in Achilles tendon reconstruction. Curr Stem Cell Res. Ther., 12 (6), 506-512. DOI: https://doi.org/10.2174/1574888X12666170523162214

Pirraco, R. P., Obokata, H., Iwata, T. et al. (2011). Development of osteogenetic cell sheets for bone tissue engineering applications. Tissue Eng. Part A, 17, 507-515. DOI: https://doi.org/10.1089/ten.tea.2010.0470

Riccalton-Banks, L., Liew, C., Bhandari, R. et al. (2003). Long-term culture of functional liver tissue: three dimensional coculture of primary hepatocytes and stellat cells. Tissue Eng., 9, 401-410. DOI: https://doi.org/10.1089/107632703322066589

Rien, C., Picant, L., Mosser, G. et al. (2017). From tendon insury to collagen-based tendon regeneration. Curr. Pharm. Des., 23 (24), 3483-3506.

Rosso, F. (2004). From cell-ECM interaction to tissue engineering. J. Cell Physiol., 199, 174-180. DOI: https://doi.org/10.1002/jcp.10471

Sancher-Adams, J., Athanasion, K. A. (2012). Dermis isolated adult stem cells of cartilage tissue engineering. Biomaterials, 3, 109-119. DOI: https://doi.org/10.1016/j.biomaterials.2011.09.038

Sied-Picard, F. N., Larkin, L. M., Shaw, C. M. et al. (2009). Three- dimentional engineered bone from bone marrow stromal cells and their autogenous extracellular matrix. Tissue Ing. Part A, 15, 187-195. DOI: https://doi.org/10.1089/ten.tea.2007.0140

Simon-Yarza, T., Bataille, I., Letourneur, D. (2017). Cardiovascular bioengineering: current state of the art. J. Cardiovasc. Transl. Res., 10 (2), 180-193. DOI: https://doi.org/10.1007/s12265-017-9740-6

Smietana, M. J., Syed-Picard, F. N., Ma, J. et al. (2009). The effect of implantation on scaffoldess three-dimentional engineered bone constructs. In Vitro Cell Dev. Biol. Anim., 45, 512-522. DOI: https://doi.org/10.1007/s11626-009-9216-3

Steinberg, M. S. (1970). Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells. J. Exp. Zool., 173, 395-433. DOI: https://doi.org/10.1002/jez.1401730406

Strohman, R. C., Bayne, E., Spector, D. et al. (1990). Myogenesis and histogenesis of skeletal muscle on flexible membranes in vitro. In Vitro Cell. Devel. Biol., 26, 201-208. DOI: https://doi.org/10.1007/BF02624113

Weinberger, F., Mannhardt, I., Eschnhagen, T. (2017). Engineering cardiac muscle tissue: a maturating field of research. Circ. Res., 120 (9), 1487-1500. DOI: https://doi.org/10.1161/CIRCRESAHA.117.310738

Yoon, D. M., Fisher, J. P. (2006). Choudracyte signaling and artificial matrices for articular cartilage engineering. Adv. Exp. Med. Biol., 585, 67-86. DOI: https://doi.org/10.1007/978-0-387-34133-0_5

Youssef, J., Wurse, A. K., Freund, L. B. et al. (2011). Quantification of the forces during self-assembly of three-dimensional microtissues. Proc. Natl. Acad. Sci. VSA, 108, 6993-6998. DOI: https://doi.org/10.1073/pnas.1102559108

Yan, Z., Yin, H., Nerlich, M. et al. (2018). Boosting tendon repair: interplay of cells, growth factors, and scaffold-free and gel-based carriers. J. Exp. Orthop., 5 (1), 1. DOI: https://doi.org/10.1186/s40634-017-0117-1

Zhang, H., Liu, M. F., Liu, R. C. et al. (2018). Physical micro - environmed - based inducible scaffold for stem

cell differentiation and tendon regeneration. Tissue Eng. Part B. Rev., 24 (6), 443-453.

Zhao, X., Kim, J., Cezar, C. A. et al. (2011). Active scaffolds for on-demand drug and cell delivery. Proc. Nat. Acad. Sci. USA, 108, 67-72. DOI: https://doi.org/10.1073/pnas.1007862108

Orabi, H., Lin, G., Ferretti, L., Lin, C. S., Lue, T. F. (2012). Scaffoldless tissue engineering of stem cell derived cavernous tissue for treatment of erectile function. J. Sex Med., 9(6), 1522-34. doi: 10.1111/j.1743-6109.2012.02727.x. DOI: https://doi.org/10.1111/j.1743-6109.2012.02727.x

Whitesides, G. M., Grzybowski, B. (2002). Self-assembly at all scales. Science, 295, 2418-21. DOI: https://doi.org/10.1126/science.1070821

Halley, J. D., Winkler, D. A. (2008). Consistent Concepts of Self-organization and Self-assembly. Complexity, 14, 10-17. DOI: https://doi.org/10.1002/cplx.20235

Published

2019-09-30

How to Cite

Mintser, O. P., Zaliskyi, V. M., & Babintseva, L. Y. (2019). GENERATION OF SELF-ORGANIZATION AND SELF-ASSEMBLY PROCESSES IN BIOLOGICAL TISSUE ENGINEERING AND REGENERATIVE MEDICINE. Medical Informatics and Engineering, (3), 37–48. https://doi.org/10.11603/mie.1996-1960.2019.3.10431

Issue

Section

Articles