THE NETWORK BASIS OF THE FUNCTIONING OF BIOLOGICAL OSCILLATORS — OSCILLATOR CIRCUIT TRIGGERS IN CELLS AND CELL-FREE SYSTEMS. ANALYTICAL REVIEW
DOI:
https://doi.org/10.11603/mie.1996-1960.2019.1.10110Keywords:
biological oscillators complicated network, systemic biology, synthetic biology, fundamental mechanisms, triggersAbstract
Background. An analytical study examines experimental and theoretical studies in the field of quantitative system analysis of the role of biological oscillators — oscillatory circuit triggers in cells and cell-free systems. Biological oscillators control bursts of neuronal activity, cell cycles, sleep and wake patterns, as well as many other important processes in living systems. It is assumed that quantitative studies of the functioning of biological oscillators will help in the prevention and treatment of many human diseases.
Results. Over the past decades, the development of methods in the field of systemic and synthetic biology has made it possible to outline ways to decipher the fundamental mechanisms underlying the functioning of these oscillators. It is shown that systemic and synthetic biology acquires significant importance in further determining the mechanisms of functioning of biological oscillators. Although research on the functioning of biological oscillators has made some progress in identifying features of the functioning of natural and artificial oscillators that increase the reliability and quality of rhythms control of biological reactions, however, the role of many other minor modifications remains poorly understood. To understand it, further theoretical and experimental research is needed.
Conclusions. The role of developing tools and methods of bioinformatics becomes extremely important in promoting systemic and synthetic biology, and the already established quantitative approaches of systemic and synthetic biology in a transdisciplinary approach involving modern techniques of other fields of knowledge.
References
Andronov, A. A., Witt, A. A., Khaikin, S. E. (1981). Teoriya kolebaniy [Theory of Oscillations]. Moscow: Science. [In Russian].
Bayramov, Sh. K. (2005). Novyie matematicheskie modeli biohimicheskih ostsillyatorov [New mathematical models of biochemical oscillators]. Biohimiya (Biochemistry). 70; 12, 1673-1681. [In Russian].
Klinshov, V. V., Nekorkin, V. N. (2013). Sinhronizatsiya avtokolebatelnyih setey s zapazdyivayuschimi svyazyami [Synchronization of self-oscillatory networks with retarded connections]. Uspehi fizicheskih nauk (Uspekhi Fiz. Nauk), 183; 12, 1323-1336. [In Russian].
Lavrova, A. I. (2018). Metod dominantnogo parametra v modelirovanii i analiza dinamiki biologicheskih ostsillyatorov, 03.01.02 Biofizika, Avtoref. na soiskanie uch. st. Dok. fiz.-mat. nauk [The method of the dominant parameter in modeling and analysis of the dynamics of biological oscillators, 03.01.02 Biophysics, Author. for the Degree of the Doctor of Phys.-Mat. Sciences]. St. Petersburg. [In Russian].
Patrushev, Ye. M., Nozdryuhin, I. S. (2015). Ispolzovanie avtokolebatelnyih sistem s haoticheskoy dinamikoy v sistemah peredachi i obrabotki slabyih izmeritelnyih signalov na fone preobladayuschih pomeh [Use of auto-oscillatory systems with chaotic dynamics in the systems for transmitting and processing weak measuring signals against the background of prevailing interference]. Polzunovskiy almanah (Polzunovsky almanac), 1, 142143. [In Russian].
Chernysheva, M. P. (2016). Vremennaya struktura biosistem i biologicheskoe vremya [Time structure of biosystems and biological time]. St. Petersburg: SUPER. [In Russian].
Anati, R. C., Lee, Y., Sato, T. K. et al. (2014). Machine learning helps identify CHRONO as a circadian clock component. PLoS Biol., 12, e1001840.
Ainsworth, M., Lee, S, Cunningham, M. O. et al. (2012). Rates and rhythms: a synergistic view of frequency and temporal coding in neural network. Neuron, 75, 572-583. DOI: https://doi.org/10.1016/j.neuron.2012.08.004
Atkinson, M. R., Savage, M. A., Myers, J. T. et al. (2003). Development of genetic circuit exhibiting toggle switch or oscillatory behavior in E.coli. Cell, 113, 597-607. DOI: https://doi.org/10.1016/S0092-8674(03)00346-5
Antioch, M. P., Song, E. J., Chang, A. M. et al. (1997). Functional identification of the mouse circadian clock gene by transgenic BAC rescue. Cell, 89, 655-667. DOI: https://doi.org/10.1016/S0092-8674(00)80246-9
Barkai, N., Leibler, S. (2000). Circadian clocks limited by noise. Nature, 403, 267-268. DOI: https://doi.org/10.1038/35002258
Batchelor, E., Lower, A., Mock, C. et al. (2011). Stimulus-dependent dynamics of p53 in single cells. Mol. Syst. Biol., 7, 488. DOI: https://doi.org/10.1038/msb.2011.20
Bell - Pedersen, D., Cassone, V. M., Earnest, D. J. et al. (2005). Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat. Rew. Genet., 6, 544-556. DOI: https://doi.org/10.1038/nrg1633
Brown, H., Difrancesco, D., Noble, S. (1979). Cardiac pacemaker oscillations and its modulation by autonomic transmitters. J. Exp. Biol., 81, 175-204. DOI: https://doi.org/10.1242/jeb.81.1.175
Cai, L., Dalal, C. K., Elowitz, M. B. (2008). Frequency - modulated nuclear loealirafion bursts coordinate gene regulation. BMC syst. Biol., 2, 75.
Cashera, F., Bedau, M. A., Buchanan, A. et al. (2011). Coping with complexity: machine learning optimization of cell-free protein synthesis. Biotechnol. Bioeng., 108, 2218-2228. DOI: https://doi.org/10.1002/bit.23178
Castillo - Hair, S. M., Villota, E. R., Coronado, A. M. (2015). Design principles for robust oscillatory behavior. Syst. Synth. Biol., 9, 125-133. DOI: https://doi.org/10.1007/s11693-015-9178-6
Chen, A. H., Lobkowicz, D., Young, V. et al. (2015). Transplant ability of circadian clock to a non corcadion organism. Sci. Adv., 1, e1500358.
Chance, B., Hess, B., Betz, A. (1964). DPNH oscillations in a cell-free extract of S. carlsbergensis. Biochem. Biophis. Res. Commun., 16, 182-187. DOI: https://doi.org/10.1016/0006-291X(64)90358-4
Chang, J. B., Ferrell, J. B. (2013). Mitotic trigger waves and the spatial coordination of the Xenopus cell cycle. Nature, 500, 603-607. DOI: https://doi.org/10.1038/nature12321
Crosthwaite, S. K., Dunlap, J. C., Loros, J. J. (1997). Neurospora wc-1 and wc-2 transcription, photo response and origins of circadian rhythmicity. Science, 276, 763-769. DOI: https://doi.org/10.1126/science.276.5313.763
Danino, T., Mondragon - Palomino, O., Tsimring, L., Hasty, J. A. (2010). A synchronized quorum of genetic clocks. Nature, 463, 326-330. DOI: https://doi.org/10.1038/nature08753
Dart, A. (2016). Tumor genesis: cancer goes tick tock. Nat. Rev. Cancer., 16, 409.
Dies, M., Galera-Laporta, L., Garcia-Ojalvo, J. (2016). Mutual regulation causes co - evhainment between a synthetic oscillatory and the bacterial cell cycle. Integr. Biol., 8, 533-541. DOI: https://doi.org/10.1039/c5ib00262a
Feillet, C., van der Horst, G. T., Levi, F. et al. (2015). Coupling between the circadian clock and cell cycle
oscillators: implication for healthy cells and malignant growth. Front Neural, 6, 96.
Ferrell. J. E., Tsai, T. Y., Yang, Q. (2011). Modeling the cell cycle: who do certain circuit oscillate? Cell, 144, 874-885. DOI: https://doi.org/10.1016/j.cell.2011.03.006
Fitz Hugh R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophys J., 1, 445-466. DOI: https://doi.org/10.1016/S0006-3495(61)86902-6
Flowitz, M. B., Leibler, S. (2000). A synthetic oscillatory network транспирационных регуляторов. Nature, 403, 335-338. DOI: https://doi.org/10.1038/35002125
Forster, A. C., Church, G. M. (2007). Synthetic biology projects in vitro. Genome Res., 17, 1-6. DOI: https://doi.org/10.1101/gr.5776007
Friesen, W. O., Block, G. M. (1984). What is a biological oscillator? Am. J. Physiol., 246, R847-R853.
Fung, E., Wong, W. W., Suen, J. K. et al. (2005). A synthetic gene-metabolic oscillator. Nature, 435, 118-122. DOI: https://doi.org/10.1038/nature03508
Fujii, T., Rondelez, Y. (2013). predator-prey molecular ecosystems. ACS Nano, 7, 27-34. DOI: https://doi.org/10.1021/nn3043572
Gallego, M., Virshup, D. M. (2007). Post-translational modifications regulate the trebling of the circadian clock. Net. Rev. Mol. Cell. Biol., 8, 139-148. DOI: https://doi.org/10.1038/nrm2106
Helen, L., Anderson, G. A., Ferrell, J. E. (2014). Spatial trigger waves: positive feedback gets you a long way. Mol. Biol. Cell., 25, 3486-3493. DOI: https://doi.org/10.1091/mbc.e14-08-1306
Gerisch, G. (1968). Cell aggregation and differentiation in dictyostelium. Curr. Top. Dev. Biol., 3, 157-197. DOI: https://doi.org/10.1016/S0070-2153(08)60354-3
Gerisch, G., Fromm, H., Huesgen, A. et al. (1975). Control of cell-contact sites by cyclic AMP pulses in ditterentiatiny dictyostelium cells. Natuure, 255, 547-549. DOI: https://doi.org/10.1038/255547a0
Ghosh, A., Chance, B. (1964). Oscillations of glycolytic intermediates in yeast cells. Biochem. Biophys. Res. Commun., 16, 174-181. DOI: https://doi.org/10.1016/0006-291X(64)90357-2
Glass, L. (2001). Synchronization and rhythmic processes in physiology. Nature, 410, 277-284. DOI: https://doi.org/10.1038/35065745
Goldbeter, A. (Eds). (2007). Special Volume in Memory of illya Prigogine: Advances in Chemical Chysics. New York: John Wiley Sons Inc. (Biological rhythms as Temporal Dissipative Strueture).
Goodwin, B. C. (Ed) (1963). A dynamic theory of cellular control processes. New York: Academic Press.
Guantes, R., Poyatos, J. F. (2006). Dynamical principles of two-component genetic oscillators. PLOS Computational Biology, 2, E30. DOI: https://doi.org/10.1371/journal.pcbi.0020030
Hasatanik, K., Leocmach, M., Genot, A. J. et al. (2013). High-throughput and long-term observation of comport - winterized biochemical oscillators. Chem. Commun. (Cambrig), 49, 8090-8092. DOI: https://doi.org/10.1039/c3cc44323j
Hemblen, M. J., White, N. E., Emery, P. T. J. et al. (1998). Molecular and behavioral analysis of four period mutants in drosophila melanogaster encompassing extreme short, hovel long, and unorthodox arrhythmic types. Genetics, 149, 165-178. DOI: https://doi.org/10.1093/genetics/149.1.165
Higgins, J. (1964). Alchemical mechanism for oscillation of glycolytic intermediates in yeast cells. Proc. Natl. Acad. Sci USA, 51, 989-994. DOI: https://doi.org/10.1073/pnas.51.6.989
Hodgkin, A. L., Huxley, A. F. (1952). Current carried by sodium and potassium is Heroogli the membrane of the giant axon of Loligo. J. Physiol., 116, 449-472. DOI: https://doi.org/10.1113/jphysiol.1952.sp004717
Hodgkin, A. L., Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 117, 500-544. DOI: https://doi.org/10.1113/jphysiol.1952.sp004764
Hussain, F., Gupta, C., Hiening, A. J. et al. (2014). Engineering temperature compensation in a synthetic genetic clock. Proc. Natl. Acad. Sci. USA, 111, 972-977. DOI: https://doi.org/10.1073/pnas.1316298111
Isomura, A., Kageyama, R. (2014). Ultradian oscillations and pulses: coordinating cellular responses and cell fate decisions. Development, 141, 3627-3636. DOI: https://doi.org/10.1242/dev.104497
Kim, J., White, K. S., Winfree, E. (2016). Construction of an in vitro bitable circuit from synthetic transcriptional switches. Mal. Syst. Biol., 2, 68.
Li, Z., Yang, Q. (2018). Systems and synthetic biology approaches in undestaudiny biological oscillators. Quant Biol., 6 (1), 1-14.
Liang, J., Luo, Y., Zhao, H. (2011). Synthetic biology: putting synthesis into biology wiley interdiscip. Rev. Syst. Biol. Med., 3 (1), 7-20.
Liu, Y., Tsinoremas, N. F., Johuson, C. H. et al. (1995). Circadian orchestration of gene expression in cyanobacteria. Genens Dev., 9, 1469-1478. DOI: https://doi.org/10.1101/gad.9.12.1469
Liu, N., Prioris, G. (2008). Disruption of calcium homeostasis and arrhythmogenesis induced by mutations in the cardiac ryanodine receptor and calsequestrin. Cardiovasc. Res., 77, 293-301. DOI: https://doi.org/10.1093/cvr/cvm004
Lohka, M. J., Hayes, M. K., Maller, J. L. (1988). Purification of maturation-promoting factor, an in fraccllalar regulator of early mitotic events. Proc. Natl. Acad. Sci. USA, 85, 3009-3013. DOI: https://doi.org/10.1073/pnas.85.9.3009
Mara, A., Holley, S. A. (2007). Oscillators and the emergence of tissue organization during rebrabish gametogenesis. Trends Cell Biol., 17, 593-599. DOI: https://doi.org/10.1016/j.tcb.2007.09.005
Millins, A., Ueda, H. R. (2017). System biology - derived discoveries of intrinsic clocks. Front Neurol., 8, 25.
Millar, A. J., Kay, S. A. (1997). The genetics of photo transduction and circadian rhythms in Arabinopsis. Bio Assays., 19, 209-214.
Mondragon - Palomino, U., Danino, I., Selimkhanov, J. et al. (2011). Entrainment of a population of synthetic genetic oscillators. Science, 333, 1315-1319. DOI: https://doi.org/10.1126/science.1205369
Mukherji, S.van oudenaarden A. (2009). Synthetic biology: understanding biological desigual from synthetic circuits. Nat. Rev. Genet., 10, 859-871. DOI: https://doi.org/10.1038/nrg2697
Nakajima, M., Imai, K., Ito, H. et al. (2005). Reconstruction of circadian of cyanobacteria Kai C. Science, 308, 414-415. DOI: https://doi.org/10.1126/science.1108451
Nelson, D. E., Ihekwaba, A. E., Elliott, M. et al. (2004). Oscillations in NI-kb signally control the dynamics of gene expression. Science, 306, 704-708. DOI: https://doi.org/10.1126/science.1099962
Noman, N., Monjo, T., Moscato, P. et.al. (2015). Evolving robust gene regulatory networks. PLOS One, 10, e0116258. DOI: https://doi.org/10.1371/journal.pone.0116258
Novak, B., Tpson, J. J. (2008). Design principles of biochemical oscillators. Nat. Mol. Cell Biol., 9, 981-991. DOI: https://doi.org/10.1038/nrm2530
Oates, A. C., Morelli, L. G., Ares, S. (2002). Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development, 139, 625-639. DOI: https://doi.org/10.1242/dev.063735
Olsen, O. F., Design, H. (1978). Oscillatory kinetics of the peroxidase- oxidase reactions in an open system. Biochim. Biophys. Acta., 523, 321-334. DOI: https://doi.org/10.1016/0005-2744(78)90035-9
O'Neill, J. S., Feeney, K. A. (2014). Circadian redox and metabolic oscillation in mammalian system. Autacoid Redox Signal, 20 (18), 2966-2981. DOI: https://doi.org/10.1089/ars.2013.5582
Pomerening, J. R., Sontad, E. D., Ferrell, J. E. (2003). Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc 2. Nat. Cell Biol., 5, 346-351. DOI: https://doi.org/10.1038/ncb954
Prigogine, I., Lefever, R., Goldbeter, A. et al. (1969). Symmetry breaking Instability in biological systems. Nature, 223, 913-916. DOI: https://doi.org/10.1038/223913a0
Prindle, A., Samayoa, P., Raznikov, I. et al. (2011). A sensing array of radically coupled genetic "bio pixels". Nature, 481, 39-44. DOI: https://doi.org/10.1038/nature10722
Purcell, O., Savery, N. J., Grierson, C. S. et al. (2019). A comparative analysis of synthetic genes oscillators. J. R. Soe. Interface, 7 (52), 1503-1524.
Pye, K., Chance, B. (1966). Sustained sinusoidal oscillations of reduced pyridine nucleotide in a cell-free extract of S. carlsbergensis. Proc. Natl. Acad. Sci. USA, 55, 888-894. DOI: https://doi.org/10.1073/pnas.55.4.888
Rust, M. J., Markson, J. S., Lane, W. S. et al. (2007). Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science, 318, 809-812. DOI: https://doi.org/10.1126/science.1148596
Scott, S. R., Hasty, J. (2016). Quorum sensing communication modules for microbial consortia. ACS Synth. Biol., 5, 969-977. DOI: https://doi.org/10.1021/acssynbio.5b00286
Semenov, S. N., Kraft, L. J., Ainla, A. et al. (2016). Autocatalytic, bitable, oscillatory networks of biologically relevant organic reactions. Nature, 537, 656-660. DOI: https://doi.org/10.1038/nature19776
Sevim, V., Gong, X., Socolar, J. E. (2016). Reliability of transcriptional cycles and yeast cell-cycle oscillator. PLOS Comput. Biol., 6, e/000842.
Shitiri, E., Varlakos, A. V., Cho, H. S. (2018). Biological oscillators and Nano networks. Sensore, 18 (5), E1544.
Stricker, J., Cookson, S., Bennett, M. R. et al. (2008). A fast, robust and final synthetic gene oscillator. Nature, 456, 516-519. DOI: https://doi.org/10.1038/nature07389
Sudakin, V., Ganoth, D., Dahan, A. et al. (1995). The cyclostome, a large complex containing cyclic-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol. Biol. Cell., 6, 185-197. DOI: https://doi.org/10.1091/mbc.6.2.185
Tan, C., Sanrabh, S., Brucher, M. P. et al. (2013). Molecular crowding shapes gene expression in syntactic cellular nano systems. Nat. Nano-technol., 8, 602-608. DOI: https://doi.org/10.1038/nnano.2013.132
Tigges, M., Marguer-Lago, T. T., Stelliny, J. et al. (2009). A tunable synthetic mammalian oscillator. Nature, 457, 309-312. DOI: https://doi.org/10.1038/nature07616
Tigges, M., Denervand, N., Graber, D. et al. (2010). A synthetic low-frequency mammalian oscillator. Nucleic Aeid. Res., 38, 2702-2711. DOI: https://doi.org/10.1093/nar/gkq121
Toettcher, J. E., Mock, C., Batchelor, E. et al. (2010). A synthetic-natural hybrid oscillator in human cells. Proc. Natl. Acad. Sci. USA, 107, 17047-17052. DOI: https://doi.org/10.1073/pnas.1005615107
Tomida, T., Takekawa, M., Saito, H. (2015). Oscillation of p53 activity controls etticient pro-inflammatory gene expression. Nat. Commun., 6, 8350.
Trejo, Banos D., Millar, A. J., Sangninetti, G. A. (2015). Bayesian approach for structure learning in oscillating regulatory network. Bioinformatics, 31, 3617-3624. DOI: https://doi.org/10.1093/bioinformatics/btv414
Tsai, T. Y., Choi, Y. S., Ma, W. et al. (2000). Robust, tunable biological oscillations from interlinked possible and negative feedback loops. Science, 321, 126-129. DOI: https://doi.org/10.1126/science.1156951
Tyson, J. J., Novak, B. (2010). Functional mobiles in biochemical reaction networks. Annu. Rev. Phys. Chem., 61, 219-240. DOI: https://doi.org/10.1146/annurev.physchem.012809.103457
Wang, L. S., Wu, F., Flores, K. et al. (2016). Build to understand: synthetic approaches to biology. Integr. Biol. (Camb)., 8 (4), 394-408. DOI: https://doi.org/10.1039/C5IB00252D
Wang, F., Fan, C. (2016). DNA reaction networks: providing a panoramic view. Nat. Chew., 8, 738740.
Yang, Q., Ferrell, J. E. (2013). The Cdk1- APC/C cell creel oscillator circuit functions as a time-delayed, ultrasensitive switch. Nat. Cell. Biol., 15, 519-525. DOI: https://doi.org/10.1038/ncb2737
Zambrano, S., De Toma, I., Pitter, A. et al. (2016). NF-kb oscillations translate into functionally related patterns of gene expression. Elife, Jan 14, 5, e09100.
Downloads
Published
How to Cite
Issue
Section
License
Journal Medical Informatics and Engineering allows the author(s) to hold the copyright without registration
The majority of Medical Informatics and Engineering Open Access journals publish open access articles under the terms of the Creative Commons Attribution (CC BY) License which permits use, distribution and reproduction in any medium, provided the original work is properly cited. The remaining journals offer a choice of licenses.
This journal is available through Creative Commons (CC) License CC-BY 4.0