• V. P. Martseniuk University of Bielsko-Biala, the Republic of Poland
  • A. Klos-Witkowska University of Bielsko-Biala, the Republic of Poland
  • A. S. Sverstiuk SHEE «I. Horbachevsky Ternopil State Medical University of the Ministry of Health of Ukraine»
Keywords: biosensor, immunosensor, antibody, antigen.


Immunosensors and immunotests are commonly used in medicine, where blood, urine or saliva samples enable concentrations of morphine, progesterone, estradiol, dopamine, insulin to be determined.

In this work, the use of immunosensors for the following medical problems is considered: for the quantitative detection of alpha-fetoprotein, for determination of p53 protein in urine for diagnostics bladder cancer, for amperometric determination of carcinoembryonic antigen, for the determination of galectin-3, as biomarker of heart failure, for detecting hepatitis B surface antigen, for sensitive detection of tumor marker for determination of serum level in breast cancer patients.


Azam, M. S., Rahman, M. R. T., Lou, Z., Tang, Y.,

Raqib, S. M., & Jothi, J. S. (2014). Advancements and application of immunosensors in the analysis of food contaminants. Nusantara Bioscience, 6(2), 186-195. doi: 10.13057/nusbiosci/n060212.

Wang, P., Li, M., Pei, F., Li, Y., Liu, Q., Dong, Y., Chu, Q.,

& Zhu, H. (2017). An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification system of double-deck gold film and thionine unite with platinum nanowire inlaid globular SBA-15 microsphere. Biosens. Bioelectron., 91, 424430. doi: org/10.1016/j.bios.2016.12.057.

Zeng, Y., Bao, J., Zhao, Y., Huo, D., Chen, M., Qi, Y., Yang, M., ... Hou, C. (2018). A sandwich-type electrochemical immunoassay for ultrasensitive detection of non-small cell lung cancer biomarker CYFRA21-1. Bioelectrochemistry, 120, 183-189, doi: org/10.1016/j.bioelechem. 2017.11.003.

Shamsipur M., Emami M., Farzin L., & Saber R. (2018).

A sandwich-type electrochemical immunosensor based on in situ silver deposition for determination of serum level of HER2 in breast cancer patients. Biosens. Bioelectron., 103, 54-61. doi: org/10.1016/j. bios.2017.12.022.

Tang, Z., He, J., Chen, J., Niu, Y., Zhao, Y., Zhang, Y.,

& Yu, C. (2018). A sensitive sandwich-type immunosensor for the detection of galectin-3 based on N-GNRs-Fe-MOFs@AuNPs nanocomposites and a novel AuPt-methylene blue nanorod. Biosens. Bioelectron., 101, 253-259. doi: org/10.1016/j. bios.2017.10.026.

Bojorge Ramirez, N., Salgado, A. M., & Valdman, B.

(2009). The evolution and development of immunosensors for health and environmental monitoring: problems and perspectives. Brazilian J. Chem. Eng., 26, 227-229. doi: org/10.1590/S0104-66322009000200001.

Polder, M., Khanum, H., Elami, R., Mohan, A, Mohiuddin, M, & Alam, M. (2015) Comparison of new ELISA kit (Recombisia Malaria AB Test with Microscopic-Detection of Malaria. Modern Biotechniques and Biotechnology, 237-243.

Giannetto, M., Bianchi, M. V., Mattarozzi, M., & Careri, M. (2017). Competitive amperometric immunosensor for determination of p53 protein in urine with carbon nanotubes/gold nanoparticles screen-printed electrodes: A potential rapid and noninvasive screening tool for early diagnosis of urinary tract carcinoma. Anal. Chim. Acta, 991, 133-141, doi: org/10.1016/j. aca.2017.09.005.

Cruz, H. J., Rosa, C. C, & Oliva, A. G. (2002). Immunosensors for diagnostic applications Parasitol. Res., 88(Suppl. 1), 4-7. doi: 10.1007/s00436-001-0559-2.

Long, F., He, M., Shi, H. C., & Zhu, A. (2008). Developement of evanescent wale all-fiber immunosensor for enviromental water analysis. Biosens. Bioelectron., 23(7), 952-958. doi: org/10.1016/j.bios.2007.09.013.

Yan, H., Gong, L., Zang, L., Dai, H., Xu, G., Zhang, S., & Lin, Y. (2016). Dual-responsive competitive immunosensor for sensitive detection of tumor marker on g-CN/rGO conjugation. Sensors and Actuators B: Chemical, 230, 810-817. doi: org/10.1016/j. snb.2016.02.144.

Chen, Y., Li, Y., Deng, D., He, H., Yan, X., Wang, Z., Fan, C., & Luo, L. (2018). Effective immobilization of Au nanoparticles on TiO2 loaded graphene for a novel sandwich-type immunosensor. Biosens. Bioelectron., 102, 301-306. doi: org/10.1016/j.bios.2017.11.009.

Igbal, S. H., Solomon, S, Murugavel, K. G., Solomon, S. S., & Blakrishnan, P. (2012). Evaluation of two indigenous rapid and two ELISA assays for diagnosis of HIV infection India. Indian J. Med. Microbiol., 30(4), 397-402. doi: org/10.4103/0255-0857.103758.

Wang, Y., Li, X., Cao, W., Li, Y., Li, H., Du, B., & Wei, Q. (2014). Facile fabrication of an ultrasensitive sandwich-type electrochemical immunosensor for the quantitative detection of alpha fetoprotein using multifunctional mesoporous silica as platform and label for signal amplification. Talanta, 129, 411-416, doi: org/10.1016/j.talanta.2014.06.017.

Rahbari, A. H., Keshavarz, H., Shojaee, S., Mohebali, M., & Rezaeian, M. (2012) IgG avidity ELISA test for diagnosis of acute toxoplasmosis in humans. Korean J. Parasitol., 50(2), 99-102. doi: org/10.3347/ kjp.2012.50.2.99.

Gołąb, J, Jakóbisiak, M, Lasek, W, & Stokłosa, T. (Eds.). (2013). Immunologia. Warszawa: Wydawnictwo Naukowe PWN.

Medyanseva, E, Khaldeeva, E, & Budnikov, G (2001). Immunosensors in biology and medicine: analytical capabilities, problems and prospects. J. Anal. Chem., 56, 1015-1031. doi: org/10.1023/A:1012345025093.

Shankaran, D. R., Gobi, K. V., & Miura, N. (2007) Recent advencements in surface plasmon resonance immunosensor for detection of small molecules of biomedical, food, enviromnetal interst. Sensors and Actuators B: Chemical, 121(1), 158-177. doi: org/10.1016/j.snb.2006.09.014.

Tokarskyy, O, & Marshall, D. (2008). Immunosensors for rapid detection of Escherichia coli 0157:H7 — perspective for use in the meat processing industry. Food Microbilogy, 25(12), 1-12. doi: org/10.1016/ jfm.2007.07.005.

How to Cite
Martseniuk, V., Klos-Witkowska, A., & Sverstiuk, A. (2018). STUDY OF CLASSIFICATION OF IMMUNOSENSORS FROM VIEWPOINT OF MEDICAL TASKS. Medical Informatics and Engineering, (1), 13-19.