RESEARCH OF MATHEMATICAL MODEL OF BIFURCATION OFVESSEL SITE WITH DETAILING CORRESPONDING TO PATIENT’S CONTROL IN LabVIEV ENVIRONMENT

Authors

  • S. N. Makoveyev Scientific Centre! of Cardiovascular Surgery by A.N. Bakuiev of RAMS, Moscow; Tambov State Technical University, Tambov; Clinical Hospital "Feofania", Kyiv
  • D. Sh. Gazyzova Scientific Centre! of Cardiovascular Surgery by A.N. Bakuiev of RAMS, Moscow; Tambov State Technical University, Tambov; Clinical Hospital "Feofania", Kyiv
  • А. А. Gorbach Scientific Centre! of Cardiovascular Surgery by A.N. Bakuiev of RAMS, Moscow; Tambov State Technical University, Tambov; Clinical Hospital "Feofania", Kyiv
  • V. A. Lyschuk Scientific Centre! of Cardiovascular Surgery by A.N. Bakuiev of RAMS, Moscow; Tambov State Technical University, Tambov; Clinical Hospital "Feofania", Kyiv
  • S. V. Frolov Scientific Centre! of Cardiovascular Surgery by A.N. Bakuiev of RAMS, Moscow; Tambov State Technical University, Tambov; Clinical Hospital "Feofania", Kyiv

DOI:

https://doi.org/10.11603/mie.1996-1960.2008.4.155

Abstract

The mathematical description of the model of bifurcation vessel and realization in LabVIEW environment is given in the article. The  volume, pressure and blood flow, and also their dependence on rigidity, tone, resistance and lag effect are considered. The model is constructed in the terms, allowing to extend the description to the branched multilevel system of vessels. Static and dynamic attitudes between state estimations and function of a vessel site and its properties are investigated. Roles of each property of a vessel in formation of blood flow, pressure and volume are established (are illustrated by diagrams).

References

Лищук В. А., Амосов Г. Г., Амосов Г. Г. (мл.), Фролов С. В. Математическая модель сосуда в частных производных. Часть 1 // Клиническая физиология кровообращения. -2006. - № 3. - С. 37-44.

Лищук В. А., Амосов Г. Г., Амосов Г. Г. (мл.), Фролов С. В. и др. Математическая модель сосуда в обыкновенных производных как инструмент для исследования сосудистой патологии. Часть 2 // Клиническая физиология кровообращения. - 2007. - № 1. - С. 64-70.

Лищук В. А. Математическая теория кровообращения .- М.: Медицина, 1991г. - 256 с.

Лищук В. А. Реализация математической модели элементарного сосудистого участка в среде LabVIEW, ориентированной на кардиохирургическую клинику // Клиническая физиология кровообращения. - 2006. - N° 4. - С. 67-81.

Лищук В. А. Модель сосуда из последовательно соединенных модулей элементарного сосудистого участка // Клиническая физиология кровообращения. - 2007. - N° 4.- С. 63-71.

Sonnenblick E. R., Downing S. E. Afterload as a primary determinant of ventricular performance// Amer. J. Phisiol. -1963. Vol. 204, № 4. - P. 604.

Defares Y. J., Osborn J. J., Hiroshi H. H. Theoretical synthesis of the cardiovascular system. Study I: The controlled system/ /Acta Physiol. Pharmacol. - 1963. Vol. 12, № 3. - P. 189 - 265.

Bugliarello G, Hsiao CC. The mechanism of phase separation at bifurcations. An introduction to the problem in the microcirculatory system. // Bibl Anat. 1965; P. 363-367

Perktold K., Rappitsch G. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model // J. Biomech. - 1995, Vol. 28, P. 845-856.

Abakumov M.V., Gavrilyuk K.V., Favorskii A.P., et al. Mathematical Model of Hemodynamics of Cardiovascular System. J. Differential. Equations, 1997, 3 (7), P. 892-898.

Veneziani A. Mathematical and Numerical Modelling of Blood Flow Problems/ PhD thesis, Politecnico di Milano, Italy, 1998.

Formaggia L., Nobile F., Quarteroni A., Veneziani A. Multiscale modelling of the circulatory system: A preliminary analysis// Comput.Visual. Sci. - 1999, №№2, P. 75-83.

Quarteroni A. Modeling the cardiovascular system: a mathematical adventure - Part II// SIAM News 2000, 34 (6).

Canic S. Blood flow through compliant vessels after endovascular repair: Wall deformation induced by the discontinuous wall properties, submitted to Comput// Visual. Sci., 2001.

Haljasmaa I.V., Robertson A. M., Galdi G. P. On the effect of apex geometry on wall shear stress and pressure in two-dimensional models of arterial bifurcations, to appear// Math. Models Meth. Appl. Sci., 2001.

Stroud J. S., Berger S. A., Saloner D. Numerical Analysis of Flow Through a Severely Stenotic Carotid Artery Bifurcation // J. Biomech. Eng. - February 2002, P. 3-12.

Bushi D, Grad Y, Einav S et al. Hemodynamic evaluation of embolic trajectory in an arterial bifurcation: an in-vitro experimental model// Stroke 2005 Dec; 36(12), P. 696-700.

Published

2012-11-20

How to Cite

Makoveyev, S. N., Gazyzova, D. S., Gorbach А. А., Lyschuk, V. A., & Frolov, S. V. (2012). RESEARCH OF MATHEMATICAL MODEL OF BIFURCATION OFVESSEL SITE WITH DETAILING CORRESPONDING TO PATIENT’S CONTROL IN LabVIEV ENVIRONMENT. Medical Informatics and Engineering, (4). https://doi.org/10.11603/mie.1996-1960.2008.4.155

Issue

Section

Articles