DIGITAL PATHOLOGY IN MELANOMA: ACHIEVEMENTS, BARRIERS AND PROSPECTS
DOI:
https://doi.org/10.11603/mie.1996-1960.2022.4.13411Keywords:
digital pathology, artificial intelligence, neural networks, malignant neoplasm, melanomaAbstract
Background. This review is focused on the assessment of the current state of development and implementation of digital pathology in pathologists practice for better diagnostics, counseling, and personalization of melanoma treatment.
Materials and methods. The data concerning the digital pathology tools used for melanoma diagnostics and prognostic/ predictive biomarkers assessment were extracted and analysed.
Results. The convergence of digital pathology and artificial intelligence has led to a paradigm shift in pathologists' practice. Thanks to digital pathology, pathologists got the opportunity to improve the accuracy, efficiency and consistency of melanoma diagnosis. Access to digital tools with assessing whole slide images facilitated improvement of the remote primary diagnostics, provision of teleconsultations, increased efficiency and balance of workload, improves collaboration between general pathologists and dermatopathologists, flourished virtual education and innovative studies. Detection of sub-visual morphometric features and integration of multi-omics data are prerequisites for improving prognostic and predictive information for personalizing the treatment of melanoma patients, which discovers new prospects for precision medicine.
Conclusions. Despite the progress in digital pathology, the implementation of artificial intelligence in diagnostic algorithms of pathologists and personalized treatment requires to solve a number of challenges related to the development and clinical validation of digital tools.
References
Acs, B., Rimm, D. L. (2018). Not just digital pathology, intelligent digital pathology. JAMA Oncol., 4(3), 403-404. DOI: https://doi.org/10.1001/jamaoncol.2017.5449
Alheejawi, S., Xu, H., Berendt, R., Jha, N., Mandal, M. (2019). Novel lymph node segmentation and proliferation index measurement for skin melanoma biopsy images. Comput Med Imaging Graph., 73, 19-29. DOI: https://doi.org/10.1016/j.compmedimag.2019.01.006
Anwa, S. M., Majid, M., Qayyum, A., Awais, M., Alnowami, M., Khan, M. K. (2018). Medical image analysis using convolutional neural networks: a review. J Med Syst., 42, 1-13. DOI: https://doi.org/10.1007/s10916-018-1088-1
Article 89 GDPR: Safeguards and derogations relating to processing for archiving purposes in the public interest, scientific or historical research purposes or statistical purposes. General Data Protection Regulation (GDPR). URL: https://gdpr-info.eu/art-89-gdpr/.
Cereceda, K., Bravo, N., Jorquera, R., Gonzalez-Stegmaier, R., Villarroel-Esprndola, F. (2022). Simultaneous and Spatially-Resolved Analysis of T-Lymphocytes, Macrophages and PD-L1 Immune Checkpoint in Rare Cancers. Cancers (Basel)., 14(11), 2815. DOI: https://doi.org/10.3390/cancers14112815
Chou, M., Illa-Bochaca, I., Minxi, B., Darvishian, F., Johannet, P., Moran, U., et al. (2021). Optimization of an automated tumor-infiltrating lymphocyte algorithm for improved prognostication in primary melanoma. Mod Pathol., 34(3), 562-571. DOI: https://doi.org/10.1038/s41379-020-00686-6
De Logu, F., Ugolini, F., Maio, V., Simi, S., Cossu, A., Massi, D. (2020). Italian Association for Cancer Research (AIRC) Study Group. Nassini, R., Laurino, M. Recognition of Cutaneous Melanoma on Digitized Histopathological Slides via Artificial Intelligence Algorithm. Front Oncol., 10, 1559. DOI: https://doi.org/10.3389/fonc.2020.01559
De Smet, F., Antoranz Martinez, A., Bosisio, F. M. (2020). Next-Generation Pathology by Multiplexed Immunohistochemistry. Trends Biochem, 46 (1), 8082. DOI: https://doi.org/10.1016/j.tibs.2020.09.009
Dimitriou, N., Arandjelovi®, O., Caie, P. D. (2019). Deep learning for whole slide image analysis: an overview. Front Med., 6, 264. DOI: https://doi.org/10.3389/fmed.2019.00264
Dudin, O., Mintser, O., Sulaieva, O. (2021). Artificial intelligence and next generation pathology: towards personalized medicine. Proc Shevchenko Sci Soc Med Sci. doi:10.25040/ntsh2021.02.07. DOI: https://doi.org/10.25040/ntsh2021.02.07
Elder, D. E., Piepkorn, M. W., Barnhill, R. L., Longton, G. M. et al. (2018). Pathologist characteristics associated with accuracy and reproducibility of melanocytic skin lesion interpretation. J Am Acad Dermatol., 79(1), 52-59. DOI: https://doi.org/10.1016/j.jaad.2018.02.070
Elmore, J. G., Barnhill, R. L., Elder, D. E., Longton, G. M. et al. (2017). Pathologists' diagnosis of invasive melanoma and melanocytic proliferations: Observer accuracy and reproducibility study. BMJ, 357, 2813. DOI: https://doi.org/10.1136/bmj.j2813
Esteva, A., Kuprel, B., Novoa, R. A., Ko, J. et al. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542, 115118. DOI: https://doi.org/10.1038/nature21056
Esteva, A., Topol, E. (2019). Can skin cancer diagnosis be transformed by AI? Lancet, 394(10211), 1795. DOI: https://doi.org/10.1016/S0140-6736(19)32726-6
Evans, A. J., Bauer, T. W., Bui, M. M., Cornish, T. C. et al. (2018). Food and Drug Administration Approval of Whole Slide Imaging for Primary Diagnosis: A Key Milestone Is Reached and New Questions Are Raised. Arch Pathol Lab Med., 142(11), 1383-1387. DOI: https://doi.org/10.5858/arpa.2017-0496-CP
Farmer, E. R., Gonin, R., Hanna, M. P. (1996). Discordance in the histopathologic diagnosis of melanoma and melanocytic nevi between expert pathologists. Hum Pathol., 27(6), 528-531. DOI: https://doi.org/10.1016/S0046-8177(96)90157-4
Gao, J., Jiang, Q., Zhou, B., Chen, D. (2019). Convolutional neural networks for computer-aided detection or diagnosis in medical image analysis: an overview. Math Biosci Eng., 16, 6536-6561. DOI: https://doi.org/10.3934/mbe.2019326
GeoMx Digital Spatial Profiling - NanoString Technologies. URL: https://www.nanostring.com/products/geomx-digital-spatial-profiler/geomx-dsp.
Goltsev, Y., Samusik, N., Kennedy-Darling, J., Bhate, S., et al. (2018). Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed Imaging. Cell., 174(4), 968-981. DOI: https://doi.org/10.1016/j.cell.2018.07.010
Govek, K. W., Troisi, E. C., Miao, Z., Woodhouse, S., Camara, P. G. (2020). Single-Cell Transcriptomic Analysis of mIHC Images via Antigen Mapping. doi: 10.1126/sciadv.abc5464. DOI: https://doi.org/10.1101/672501
Halse, H., Colebatch, A. J., Petrone, P., Henderson, M. A. et al. (2018). Multiplex immunohistochemistry accurately defines the immune context of metastatic melanoma. Sci Rep., 8(1), 11158. DOI: https://doi.org/10.1038/s41598-018-28944-3
Han, T., Liu, C., Yang, W., Jiang, D. (2019). Learning transferable features in deep convolutional neural networks for diagnosing unseen machine conditions. ISA Trans., 93, 341-353. DOI: https://doi.org/10.1016/j.isatra.2019.03.017
Hekler, A., Utikal, J. S., Enk, A. H., Berking, C. et al. (2019). Pathologist-level classification of histopathological melanoma images with deep neural networks. Eur J Cancer., 115, 79-83. DOI: https://doi.org/10.1016/j.ejca.2019.04.021
Hekler, A., Utikal, J. S., Enk, A. H., Solass, W. et al. (2019). Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images. Eur J Cancer, 118, 91-96. DOI: https://doi.org/10.1016/j.ejca.2019.06.012
HistoGeneX. Histo Highlights (2016). URL: https://www.histogenex.com/images/PDFs/Histo-Highlights-July-2016-HistoGeneX-Newsletter.pdf.
Ianni, J. D., Soans, R. E., Sankarapandian, S., Chamarthi, R. V., Ayyagari, D., Olsen, T. G. et al. (2020). A Whole Slide Image Classification System Validated on Uncurated Multi-Site Data Emulating the Prospective Pathology Workload. Sci Rep., 10(1), 3217. DOI: https://doi.org/10.1038/s41598-020-59985-2
Kent, M. N., Olsen, T. G., Feeser, T. A., Tesno, K. C., Moad, J. C, Conroy, M. P. et al. (2017). Diagnostic Accuracy of Virtual Pathology vs Traditional Microscopy in a Large Dermatopathology Study. JAMA Dermatol., 153(12), 1285-1291. DOI: https://doi.org/10.1001/jamadermatol.2017.3284
Khosravi, P., Kazemi, E., Imielinski, M., Elemento. O., Hajirasouliha, I. (2018). Deep convolutional neuralnetworks enable discrimination of heterogeneous digital pathology images. EBioMedicine., 27, 317-328. DOI: https://doi.org/10.1016/j.ebiom.2017.12.026
Komura, D., Ishikawa, S. (2019). Machine learning approaches for pathologic diagnosis. Virchows Arch., 475, 131-138. DOI: https://doi.org/10.1007/s00428-019-02594-w
Kucharski, D., Kleczek, P., Jaworek-Korjakowska, J., Dyduch, G., Gorgon, M. (2020). Semi-Supervised Nests of Melanocytes Segmentation Method Using Convolutional Autoencoders. Sensors (Basel)., 20(6), 1546. DOI: https://doi.org/10.3390/s20061546
Kulkarni, S., Seneviratne, N., Baig, M. S., Khan,
A. H. A. (2020). Artificial intelligence in medicine: where are we now? Acad Radiol., 27, 62-70. DOI: https://doi.org/10.1016/j.acra.2019.10.001
Lee, J. H., Daugharthy, E. R., Scheiman, J., Kalhor, R., Yang, J. L., Ferrante, T. C. et al. (2014). Highly multiplexed subcellular RNA sequencing in situ. Science., 343(6177), 1360-1363. DOI: https://doi.org/10.1126/science.1250212
Madabhushi, A., Lee, G. (2016). Image analysis and machine learning in digital pathology: challenges and opportunities. Med Image Anal., 33, 170-175. DOI: https://doi.org/10.1016/j.media.2016.06.037
Meroueh, C., Chen, Z. E. (2022). Artificial intelligence in anatomical pathology: building a strong foundation for precision medicine. Hum Pathol. doi: 10.1016/j.humpath.2022.07.008. DOI: https://doi.org/10.1016/j.humpath.2022.07.008
Merritt, C. R., Ong, G. T., Church, S. E., Barker, K., Danaher, P., Geiss, G. et al. (2020). Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat Biotechnol, 38(5), 586-599. DOI: https://doi.org/10.1038/s41587-020-0472-9
Onega, T., Barnhill, R. L., Piepkorn, M. W., Longton, G. M., Elder, D. E., Weinstock, M. A. et al. (2018). Accuracy of Digital Pathologic Analysis vs Traditional Microscopy in the Interpretation of Melanocytic Lesions. JAMA Dermatol., 154(10), 1159-1166. DOI: https://doi.org/10.1001/jamadermatol.2018.2388
Onega, T., Reisch, L. M., Frederick, P. D., Geller, B. M., Nelson, H. D., Lott, J. P. et al. (2016). Use of Digital Whole Slide Imaging in Dermatopathology. J Digit Imaging., 29(2), 243-253. DOI: https://doi.org/10.1007/s10278-015-9836-y
Pantanowitz, L., Sharma, A., Carter, A. B., Kurc, T., Sussman, A., Saltz, J. (2018). Twenty Years of Digital Pathology: An Overview of the Road Travelled, What is on the Horizon, and the Emergence of Vendor-Neutral Archives. J. Pathol Inform., 9, 40. DOI: https://doi.org/10.4103/jpi.jpi_69_18
Robinson, E., Kulkarni, P. M., Pradhan, J. S., Gartrell, R. D., Yang, C. et al. (2019). Prediction of distant melanoma recurrence from primary tumor digital H&E images using deep learning. J. Clin. Oncol., 37(15I_suppl), 9577-9577. DOI: https://doi.org/10.1200/JCO.2019.37.15_suppl.9577
Saginala, K., Barsouk, A., Aluru, J. S., Rawla, P., Barsouk, A. (2021). Epidemiology of Melanoma. Med. Sci. (Basel)., 9(4), 63. DOI: https://doi.org/10.3390/medsci9040063
Salto-Tellez, M., Maxwell, P., Hamilton, P. (2019). Artificial intelligence-the third revolution in pathology. Histopathology., 74(3), 372-376. DOI: https://doi.org/10.1111/his.13760
Serag, A., Ion-Margineanu, A., Qureshi, H., McMillan, R., Saint Martin, M. J. et al. (2019). Translational AI and Deep Learning in Diagnostic Pathology. Front Med (Lausanne)., 6, 185. DOI: https://doi.org/10.3389/fmed.2019.00185
Sharma, G., Carter, A. (2017). Artificial intelligence and the pathologist: Future frenemies? Arch. Pathol. Lab. Med., 141, 622-623. DOI: https://doi.org/10.5858/arpa.2016-0593-ED
Shen, D., Wu, G., Suk, H. I., (2017). Deep learning in medical image analysis. Annu Rev Biomed Eng.,19, 221-248. DOI: https://doi.org/10.1146/annurev-bioeng-071516-044442
Shoo, B. A., Sagebiel, R. W., Kashani-Sabet, M. (2010). Discordance in the histopathologic diagnosis of melanoma at a melanoma referral center. J. Am. Acad. Dermatol., 62, 751-756. DOI: https://doi.org/10.1016/j.jaad.2009.09.043
Siegel, R. L., Miller, K. D., Fuchs, H. E., Jemal, A. (2021). Cancer Statistics, 2021. CA Cancer J. Clin., 71(1), 7-33. DOI: https://doi.org/10.3322/caac.21654
Stoeckius, M., Hafemeister, C., Stephenson, W., Houck-Loomis, B., Chattopadhyay, P. K., Swerdlow, H., et al. (2017). Simultaneous epitope and transcriptome measurement in single cells. Nat Methods.,14(9), 865-868. DOI: https://doi.org/10.1038/nmeth.4380
Ugolini, F., Pasqualini, E., Simi, S., Baroni, G., Massi, D. (2022). Bright-Field Multiplex Immunohistochemistry Assay for Tumor Microenvironment Evaluation in Melanoma Tissues. Massi. Cancers (Basel)., 14(15), 3682. DOI: https://doi.org/10.3390/cancers14153682
Van Herck, Y., Antoranz, A., Andhari, M. D., Milli, G., Bechter, O., De Smet, F. et al. (2021). Multiplexed Immunohistochemistry and DigitalPathology as the Foundation for Next-Generation Pathology in Melanoma: Methodological Comparison and Future Clinical Applications. Front Oncol., 11, 636681. DOI: https://doi.org/10.3389/fonc.2021.636681
Visiopharm. High-quality alignment of serial sections (2020). URL: https://visiopharm.com/ visiopharm-digital-image-analysis-software-features/ tissuealign/.
Wang, L., Ding, L., Liu, Z., Sun, L., Chen, L., Jia, R. et al. (2020). Automated identification of malignancy in whole-slide pathological images: Identification of eyelid malignant melanoma in gigapixel pathological slides using deep learning. Br. J. Ophthalmol., 104, 318-323. DOI: https://doi.org/10.1136/bjophthalmol-2018-313706
Wong, S. T. (2018). Is pathology prepared for the adoption of artificial intelligence? Cancer Cytopathol, 126, 373-375. DOI: https://doi.org/10.1002/cncy.21994
Xu, H., Berendt, R., Jha, N., Mandal, M. (2017). Automatic measurement of melanoma depth of invasion in skin histopathological images. Micron., 97, 56-67. DOI: https://doi.org/10.1016/j.micron.2017.03.004
Xu, H., Lu, C., Berendt, R., Jha, N., Manda,l M. (2018). Automated analysis and classification of melanocytic tumor on skin whole slide images. Comput. Med. Imaging. Graph., 66, 124-134. DOI: https://doi.org/10.1016/j.compmedimag.2018.01.008
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Journal Medical Informatics and Engineering allows the author(s) to hold the copyright without registration
The majority of Medical Informatics and Engineering Open Access journals publish open access articles under the terms of the Creative Commons Attribution (CC BY) License which permits use, distribution and reproduction in any medium, provided the original work is properly cited. The remaining journals offer a choice of licenses.
This journal is available through Creative Commons (CC) License CC-BY 4.0