• K. V. Kostyukevych V. Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine
  • Ye. A. Kryuchyna Kyiv City Clinical Hospital № 10
  • A. A. Kryuchyn Institute of Problems of Information Registration
  • S. O. Kostyukevych V. Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine




surface plasmon resonance, surface-enhanced Raman scattering, multilayer films, nanoparticles, hybrid and metamaterials, embossed nanostructures


Background. The work is devoted to the study of methods for improving optical biosensor devices based on surface plasmon resonance (PPR) and surface-enhanced Raman scattering (SERS) using hybrid nanostructures and metamaterials. The aim of the study was to analyze the current state, problems and prospects of increasing the sensitivity of optical biosensors using hybrid nanomaterials and embossed nanostructures.

Materials and methods. Theoretical analysis and generalization, systematization of research results using such leading scientometric databases as ScienceDirect, PubMed, Emerald, IEEE Xplore, Taylor & Francis, printed scientific articles for the period from 2009 to 2020 on keywords biosensors, surface plasmon resonance, relief structures, sensitivity of biosensors, including in Ukrainian and Russian translations.

Results. Schemes of using hybrid magnetic-plasmon nanoparticles, bimetallic and dielectric multilayer films, diffraction structures, CD disks and Fano-resonant metamaterials are considered. Expanding the use of optical biosensors and conducting research at a qualitatively new level is possible only by significantly increasing their sensitivity. To solve this problem, it is necessary to develop new nano and metamaterials, as well as to use hybrid nanostructures specially created on their basis. The use of nanomaterials can significantly increase the sensitivity of biosesors based on surface plasmon resonance (PPR) and Raman scattering (SERS and SEIRA technologies). Effective, highly sensitive, high-performance optical biosensors can be created using microrelief structures based on CD technology.

Conclusions. Optical biosensors, which allow the detection of a small amount of a substance and can be adapted to the analysis and detection of a large number of different biological and chemical objects, have become the most widespread. To increase the sensitivity of biosensors based on the method of surface-enhanced Raman scattering (SERS) use spectroscopy of surface-enhanced infrared absorption metal (SEIRA) using plasmon nanoantennas or metamaterials. In such hybrid structures, a significant local amplification of the near-field oscillatory mode of biomolecules is provided by specially designed plasmon nanoantennas, and the close connection of plasmon modes and oscillatory modes of molecules further enhances the SEIRA detection signal.


Dey, D., Goswami, T. (2011). Optical biosensors: A revolution towards quantum nanoscale electronics device fabrication. Journal of Biomedicine and Biotechnology, Article ID 348218. doi: 10.1155/2011/348218.

Naresh, V., Lee, N. (2021). A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors (Basel), 1 (4):1109. doi: 10.3390/s21041109.

Tewari, A., Jain, B., Brar, B., Prasad, G., Prasad, M. (2020). Biosensors: Modern Tools for Disease Diagnosis and Animal Health Monitoring. Biosensors in Agriculture: Recent Trends and Future Perspectives, 387-414. doi:10.1007/978-3-030-66165-6_18.

Luchansky, M. S., Bailey, R. C. (2012). High-Q optical sensors for chemical and biological analysis. Anal Chem., 84 (2), 793-821. doi: 10.1021/ac2029024.

Estevez, M. C., Alvarez, M., Lechuga, L. M. (2011). Integrated optical devices for lab-on-a-chip biosensing applications. Laser & Photonics Reviews, 6 (4), 463487. doi:10.1002/lpor.201100025.

Kostyukevych, K. V., Khristosenko, R. V., Zagorodnya, S. D., Kostyukevych, S. O., Koptyukh, A. A., Kryuchyn, A. A., Oleksenko, P. F. (2020). Molecular diagnostics based on angular spectroscopy of surface plasmons. Data recording, storage and processing, 22 (3), 14-30. doi.org/10.35681/1560-9189.2020.22.3.218824. [In Ukraian].

Mamichev, D. A., Kuznetsov, I. A., Maslova, N. E., Zanaveskin, M. L. (2012). Optical sensors based on surface plasmon resonance for highly sensitive biochemical analysis. Molecular Medicine, 6, 19-27. [ In Russian].

Holzinger, M., Le Goff, A., Cosnier, S. (2014). Nano-materials for biosensing applications: a review. Front. Chem. 2:63. doi: 10.3389/fchem.2014.00063.

Stebunov, Y., Arsenin, A. (2016). New perspectives for pharmacology - biosensors based on graphene oxide. Analytics, 1. [In Russian].

Koh, I., Josephson, L. (2009). Magnetic Nanoparticle Sensors. Sensors, 9 (10), 8130-8145. doi.org/10.3390/ s91008130.

Stebunov, Y. V., Afteneva, O. A., Arsenin, A. V., Volkov, V. S. (2015). Highly sensitive and selective sensor chips with graphene-oxide linking layer. ACS Applied Materials & Interfaces, 7 (39), 21727-21734. doi: 10.1021/ acsami.5b04427.

Tabasi, O., Falamaki, C. (2018). Recent advancements in the methodologies applied for the sensitivity enhancement of surface plasmon resonance sensors. Analytical Methods, 32, 3899-4008. doi: 10.1039/ c8ay00948a.

Abbas, A., Linman, M. J., Cheng, Q. (2011). New trends in instrumental design for surface plasmon resonance-based biosensors. Biosensors and Bioelectronics 26 (5), 1815-1824. doi.org/10.1016/j.bios.2010.09.030.

Kurgan, N. A., Karbovskaya, L. I., Karbovsky, V. L. (2019). Functional sensory nanostructures (overview). Nanosistemi, Nanomateriali, Nanotehnologii, 17 (1), 167-206. [In Russian].

Ivanov, A. S. (2012). Investigation of intermolecular interactions using optical biosensors operating on the effect of surface plasmon resonance. Modern technologies in medicine, 4, 142-153. [In Russian].

Handbook of Surface Plasmon Resonance (2008) / Edited by R. B. M. Schasfoort, A. J. Tudos. Cambridge (UK): Royal Society of Chemistry. doi. org/10.1039/9781847558220.

Mitchell, J. (2010). Small molecule immunosensing using surface plasmon resonance. Sensors, 10, 73237346. doi.org/10.3390/s100807323.

Puiu, M., Bala, C. (2016). SPR and SPR imaging: recent trends in developing nanodevices for detection and real-time monitoring of biomolecular events. Sensors, 16, 870-884. doi.org/10.3390/s16060870.

Singh, P. (2016). Biosensors: historical perspectives and current challenges. Sensors and Actuators B, 229, 110-130. doi.org/10.1016/j.snb.2016.01.118.

Beketov, G. V., Klimov, O. S., Matyash, I. E., Obe-remok, E. A. et al. (2013). Physical bases of polarimetry of high informative ability / Edited by B. K. Hearts. Kyiv: NTUU "KPI" VP VPK "Polytechnic". ISBN 978-966-622-608-5.

Shirshov, Y. M., Chegel, V. I., Subota, Y. V., Matsas, E. P. Et al. (1995). Biosensors based on SPR and optimization of their working parameters. Proc. of SPIE, 2780, 257-260. doi.org/10.1117/12.238166.

Khrystosenko, R. V. (2015). Optimization of the surface plasmon resonance minimum detection algorithm for improvement of method sensitivity. Semiconductor

Physics, Quantum Electronics and Optoelectronics, 18 (3), 279-285.

Kostyukevich, S. O., Koptyukh, A. A., Kostyuke-vich, K. V., Lisyuk, V.O. et al. (2019). Adequate sensors with a prism type stimulate surface plasmon resonance on a polymeric basis. Data recording, storage and processing, 21 (3), 3-19. [In Ukraian].

Kostioukevich, S. A., Shirshov, Y. M., Matsas, E. P., Chegel, V. I. Et al. (1995). Application of surface plasmon resonance for the investigation of ultra-thin metal films. Proc. of SPIE, 2648, 144-151. doi. org/10.1117/12.226156.

Kostyukevich, S. O., Khristosenko, R. V., Kostyukevich, K. V. et al. (2018). Molecular analysis of thin films of different nature based on surface plasmon spectroscopy. Data recording, storage and processing, 20 (4), 5-20. [In Ukraian].

Kostyukevich, K. V., Shirshov, Yu. M., Khristosenko, R. V. Et al. (2018). Features of the angular spectrum of surface plasmon-polariton resonance in the Kretschman geometry in the study of latex aqueous suspension. Optoelectronics and semiconductor technology, 53, 220-239. [In Russian].

Kostyukevych, K. V., Khristosenko, R. V., Pavluchen-ko, A. S. et al. (2016). A nanostructural model of ethanol adsorption in thin calixarene films. Sensors and Actuators B, 223, 470-480. doi.org/10.1016%2Fj. snb.2015.09.123.

Kostyukevych, K. V., Khristosenko, R. V., Shirshov, Yu. M. et al. (2011). Multi-element gas sensor based on surface plasmon resonance: recognition of alcohols by using calixarene films. Semiconductor Physics, Quantum Electronics and Optoelectronics, 14 (3), 313-320.

Khrystosenko, R. V. (2016). Optimization of surface plasmon resonance based biosensor for clinical diagnosis of the Epstein-Barr herpes virus disease. Semiconductor Physics, Quantum Electronics and Optoelectronics, 19 (1), 84-89. dx.doi.org/10.15407/ spqeo19.01.084.

Kostyukevych, K. V., Snopok, B. A., Shirshov, Yu. M. et al. (1998). New opto-electronic system based on the surface plasmon resonance phenomenon: application to the concentration determination of DD-fragment of fibrinogen. Proc. of SPIE, 3414, 290-301. doi: 10.1117/12.323542.

Kostyukevych, S. O., Kostyukevych, K. V., Khristosenko, R. V. et al. (2017). Multielement surface plasmon resonance immunosensor for monitoring of blood circulation system. Optical Engineering. 56 (12). 121907. doi:10.1117/1.OE.56.12.121907.

Voros J. (2004). The density and refractive index of adsorbing protein layers. Biophysical Journal, 87, 553561. doi.org/10.1529/biophysj.103.030072.

Piliarik, M., Homola, J. (2009). Surface plasmon resonance (SPR) sensors: approaching their limits? Opt. Express, 17 (19), 16505-16517. doi.org/10.1364/ OE.17.016505.

Linman, M. J., Abbas, A., Cheng, Q. (2010). Interface design and multiplexed analysis with surface plasmon resonance (SPR) spectroscopy and SPR imaging. Analyst, 135, 2759-2767. doi.org/10.1039/c0an00466a.

Starodub, N. F., Dibrova, T. L., Shirshov, Yu. M., Kostyukevych, K. V. (1999). Development of the myoglobin sensor based on the surface plasmon resonance. Ukrainskyi Biokhimichnyi Zhurnal, 71 (2), 33-37.

Takano, T. (1977). Structure of deoxymyoglobin from sperm whale. Journal of Molecular Biology,110 (3), 569-584. doi.org/10.1016/s0022-2836(77)80112-5.

Rachkov, A. E., Bakhmachuk, A. O., Gorbatiuk, O. B. et al. (2015). SPR investigations of the formation of intermediate layer of the immunosensor bioselective element based on the recombinant Staphylococcal protein A. Biopolymers and Cell, 31 (4), 301-308. doi. org/10.7124/bc.0008EF.

Bakhmachuk, A., Gorbatiuk, O., Rachkov, A. et al. (2017). Surface Plasmon Resonance Investigations of Bioselective Element Based on the Recombinant Protein A for Immunoglobulin Detection. Nanoscale Res Lett, 12, Article number: 112. doi.org/10.1186%2 Fs11671-017-1903-5.

Homola, J. (2008). Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev., 108 (2), 462-493. doi.org/10.1021/ cr068107d.

Kostyukevych, K. V. (2016). Transducer based on surface plasmon resonance with thermal modification of metal layer properties. Semiconductor Physics, Quantum Electronics and Optoelectronics, 199 (3), 255-266. doi:10.15407/spqeo19.03.255.

Lysenko, S. I., Snopok, B. A., Sterligov, V. A. et al. (2001). Light scattering by molecular-organized films on the surface of polycrystalline gold. Optics and Spectroscopy, 90 (4), 606-616. doi.org/10.1134/1.1366757.

Kostyukevich, S. O., Kostyukevich, K. V. (2013). Bagatolement re-transformation based on surface plasmon resonance in disk format. UA 103662 C2. IPC (2006.01): G01N 21/55, G01N 21/27, G01N 21/25. No. a201111725, Appl. 04.10.2011; Publ. 11.11.2013, Bul. No. 21.

Kwizera, E. A., Chaffin, E., Wang, Y., Huang, X. (2017). Synthesis and properties of magnetic-optical core-shell nanoparticles. RSC Advances., 7 (28), 17137-17153. doi:10.1039/c7ra01224a.

Pershina, A. G., Sazonov, A. E., Milto, I. V. (2008). The use of magnetic nanoparticles in biomedicine. Bulletin of Siberian Medicine, 7 (2), 70-78. doi. org/10.20538/1682-0363-2008-2-70-78. [In Russian].

Brullot, W., Valev, V. K., Verbiest, T. (2012). Mag-netic-plasmonic nanoparticles for the life sciences: calculated optical properties of hybrid structures. Nano-medicine: Nanotechnology, Biology and Medicine, 8 (5), 559-568. doi:10.1016/j.nano.2011.09.004.

Turanskaya, S. P., Chetyrkin, A. D., Dubrovin, I. V. et al. (2011). Synthesis, properties and application in experimental medicine and biology of magnetosensitive nanocomposites containing noble metals. Surface, 3, 343-366.

Barrios, C. A., Canalejas-Tejero, V., Herranz, S. (2014). Aluminum Nanohole Arrays Fabricated on Polycarbonate for Compact Disc-Based Label-Free Optical Biosensing. Plasmonics, 9, 645-649. doi.org/10.1007/ s11468-014-9676-5.

Baikova, T. V., Danilov, P. A., Gonchukov, S. A. et al. (2016). Diffraction microgratings as a novel optical biosensing platform. Laser Physics Letters, 13 (7), 075602. doi:10.1088/1612-2011/13/7/075602.

Kubo, I., Furutani, S. (2019). Compact disc-type biosensor devices and their applications. Chemical, Gas, and Biosensors for Internet of Things and Related Applications, 223-235. doi:10.1016/b978-0-12-815409-0.00016-4.

Chou, S.-Y., Meng, W.-Y., Chiu, K.-C., Lin, C.-M. et al. (2009). Surface plasmon resonance biosensor based on compact discs. IEEE 3rd International Conference on Nano/Molecular Medicine and Engineering, 231-234. doi:10.1109/nanomed.2009.5559081.

Hwu, E. E.-T., Boisen, A. (2018). Hacking CD/DVD/ Blu-ray for Biosensing. ACS Sensors, 3 (7), 1222-1232. doi:10.1021/acssensors.8b00340.

Morais, S., Tortajada-Genaro, L., Maquieira, A. (2014). Array-on-a-disk? How Blu-ray technology can be applied to molecular diagnostics. Expert Review of Molecular Diagnostics, 14 (7), 773-775. doi:10.1586/ 14737159.2014.929945.

Baburin, A. S., Kalmykov, A. S., Kirtaev, R. V. et al. (2018). Toward a theoretically limited SPP propagation length above two hundred microns on an ultra-smooth silver surface [Invited]. Optical Materials Express, 8 (11), 3254-3261. doi.org/10.1364/OME.8.003254.

Khanikaev, A. B., Wu, C., Shvets, G. (2013). Fano-res-onant metamaterials and their applications. Nanopho-tonics, 2 (4). doi:10.1515/nanoph-2013-0009.

Luk'yanchuk, B., Zheludev, N. I., Maier, S. A. et al. (2010). The Fano resonance in plasmonic nanostruc-tures and metamaterials. Nature Materials, 9 (9), 707715. doi:10.1038/nmat2810.

Jung, Y., Hwang, I., Yu, J. (2019). Fano Metamaterials on Nanopedestals for Plasmon-Enhanced Infrared Spectroscopy. Sci Rep., 9, Article number: 7834. doi. org/10.1038/s41598-019-44396-901.

Ghorbanpour, M., Falamaki, C. (2013). A novel method for the production of highly adherent Au layers on glass substrates used in surface plasmon resonance analysis: substitution of Cr or Ti intermediate layers with Ag layer followed by an optimal annealing treatment. Journal of Nanostructure in Chemistry, 3, 66-73.



How to Cite

Костюкевич, К. В., Крючина, Є. А. ., Крючин, А. А., & Костюкевич, С. О. (2021). OPTICAL BIOSENSORS BASED ON HYBRID NANOSTRUCTURES AND METAMATERIALS. Medical Informatics and Engineering, (2), 14–33. https://doi.org/10.11603/mie.1996-1960.2021.2.12450