HEART-DERIVED HORMONES: BIOMEDICAL INTERACTION OF DISTANT, PARACRINE AND AUTOCRINE ACTION

Authors

  • O. P. Mintser Shupyk National Medical Academy of Postgraduate Education https://orcid.org/0000-0002-7224-4886
  • V. M. Zalisky Shupyk National Medical Academy of Postgraduate Education
  • M. Yu. Bolgov The State Institution «V. P. Komisarenko Institute of Endocrinology and Metabolism»

DOI:

https://doi.org/10.11603/mie.1996-1960.2020.3.11603

Abstract

Background. The heart plays a central role in the circulatory system and provides the body with the necessary oxygen, nutrients and protein growth factors. However, today it can synthesize and make signaling molecules for communication with distant target organs. The study of long-known and recently discovered heart hormones promotes this mechanism of their action in coordination with the function of the heart and the biology of target organs. The purpose of the study was to conceptualization of the «endocrine heart» paradigm.

Materials and methods. Results. The paper considers the biochemistry, signaling, function, regulation and clinical significance of representative hormones of cardiac origin with an emphasis on their participation in the development of complex biomedical processes in normal and cardiovascular pathology. The substantiation of the «endocrine heart» paradigm provided a transition from the classical notion of the heart as an organ functioning exclusively as a blood pump to a self-regulating system in the sense of loading in the humoral plan. The study of hormones of cardiac origin revealed their common functional features and emphasize the presence of a hormone-dependent mechanism that the heart uses to communicate with other target organs that control cardiovascular function.

Conclusions. It is emphasized that regardless of the main place of hormones production (heart, other organs), the above-mentioned polypeptide hormones function synergistically, together contribute to the regulation of cardiovascular hemodynamic, affecting vascular tone, autonomic nervous system and normal heart rate and pathology.

References

Alekseenko L. P., Orekhovich V. N. (1987). Novoe v probleme serdechno-sosudistoi regulyatsii: ehndokrinnaya funktsiya serdtsa (New in the problem of cardiovascular regulation: endocrine function of the heart (review)). Voprosy meditsinskoi khimii (Medical chemistry issues), 33 (3), 2-15. [In Russian].

Sytyi V. P., Mrochek A. G. (1995). Gormonal'naya funktsiya serdtsa v norme i pri patologicheskikh sostoyaniyakh (The hormonal function of the heart is normal and in pathological conditions). Meditsinskie novosti (Medical news), 4, 10-21. [In Russian].

Oshima Y., Ouchi N., Shimano M., Pimentel D. R., ...Walsh K. (2009). Activin A and follistatin-like 3 determine the susceptibility of heart to ischemic injury. Circulation, 120 (16), 1606-1615.

Anderson S. B., Goldberg A. L., Whitman M. (2008). Identification of a novel pool of extracellular pro-myostatin in skeletal muscle. J. Biol. Chem., 283 (11), 7027-7035. doi: 10.1074/jbc.M706678200.

Matsumoto E., Sasli S., Kikotifa H., ... Itoh N. (2013). Angiotensin II-induced cardiac hypertrophy and fibrosis are promoted in mice lacking Fgf-16. Genes Cells, 18 (7), 544-553. doi: 10.1111/gtc.12055.

McMurray J. J., Packer M., Desai A. S., Rizkala A. R. ... PARADIGM-HF Investigators and Committees (2014). Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl J. Med., 371 (11), 993-1004. doi: 10.1056/NEJMoa1409077.

Cao Z., Jia Y., Zhu B. (2019). BNP and NT-proBNP as

Diagnostic Biomarkers for Cardiac Dysfunction in both clinical and Forensic Medicine. Int. J. Mol. Sci., 20 (8), 1820. doi: 10.3390/ijms20081820.

Shimano M., Ouchi N., Nakamura K., ... Walsh K. (2011).

Cardiac myocyte-specific ablation of follistatin-like 3 attenuates stress-induced myocardial hypertrophy. J. Biol. Chem., 286 (11), 9840-9848. doi: 10.1074/jbc. M110.197079.

Wang Y., de Waard M. C., Stremer-Kook A., ... Walther T. (2007). Cardiomyocyte-restricted over-expression of C-type natriuretic peptide prevents cardiac hypertrophy induced by myocardial infarction in mice. Eur. J. Heart Fail., 9 (6-7), 548-557. doi: 10.1016/j. ejheart.2007.02.006.

Castillero E., Akashi H., Wang C. (2015). Cardiac myostatin upregulation occurs immediately after myocardial ischemia and is involved in skeletal muscle activation of atrophy. Biochem. Biophys. Res. Commun., 457 (1), 106-111. doi: 10.1016/j.bbrc.2014.12.057.

Chen S., Lake B. B., Zhang K. (2019). High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nature Biotechnology, 37 (12), 1452-1457. doi: 10.1038/s41587-019-0290-0.

Cheng M., Yang J., Zhao X., ... Qin G. (2019). Circulating myocardial microRNAs from infarcted hearts are carried in exomes and mobiles bone marrow progenitor cells. Nat. Commun., 10 (1), 959. doi: 10.1038/s41467-019-08895-7.

Kempf T., Horn-Wiechmann R., Brabant G. ... Wollert K. C. (2007). Circulation concentrations of CDF15 is apparently healthy elder by individuals and patients with chronic heart failure as assessed by a new immune radiometric sandwich assay. Clin. Chem.. 53, 284-291. doi: 10.1373/clinchem.2006.076828.

Widera C., Hoza-Wichmann R., Kemp T. ... Wollert K. C. (2009). Circulatory concentrations of follistatin-like 1 in healthy individuals and patients with acute coronary syndrome as assessed by luminomefric sandwich assay. Clin. Chem., 55 (10), 1794-1800. doi: 10.1373/ clinchem.2009.129411.

Oikawa S., Imai M., Ueno A., ... Matsuo H. (1984). Cloning and sequence analysis of DNA encoding a precursor for human atrial natriuretic polypeptide. Nature, 309 (5970), 724-726. doi: 10.1038/309724a0.

Korf-Klingebiel M., Kempf T., Schluter K. D., ... Wollert K. C. (2011). Conditional transgenic expression of fibroblast growth factor 9 in the adult mouse heart reduces heart failure mortality after myocardial infarction. Circulation, 123 (5), 504-514. doi: 10.1161/ CIRCULATIONAHA.110.989665.

Zno A., Zhao J., Li T., ... Guo Y. (2020). CTRP9 knockout exaggerates lipotoxity in cardiac myocytes and high-fat diet-induced cardiac hypertrophy through inhibition the LKB1/AMAPK pathway. J. Cell Mol. Med., 24 (4), 2635-2647. doi: 10.1111/jcmm.14982.

Soeki T., Kishimoto I., Okumura H., ... Kangawa K. (2005). C-type natriuretic peptide, a novel antibiotic and antyhipertrophyk agent, prevents cardiac remodeling after myocardial infarction. J. Ank. Cell. Cardiol., 45 (4), 608-616. doi: 10.1016/j.jacc.2004.10.067.

Sudoch T., Minamino N., Kangawa K., Matsuo H. (1990). C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem. Biophys. Res. Commun., 168 (2), 863-870. doi.org/10.1016/0006-291X(90)92401-K.

Wilcox J. N., Augustine A., Goeadel D. V., Lowe D. G. (1991.). Differential regional expression of three natriuretic peptide receptor genes within primate tissues. Mol. Cell Biol., 11 (7), 3454-3462. doi: 10.1128/ mcb.11.7.3454.

Zhao J. S., Pan W., Bekeredjian R., Shohet R. V. (2006). Endogenous endothelin-1 is required for cardiomyocyte survival in vivo. Circulation, 114 (8), 830-837. doi: org/10.1161/CIRCULATIONAHA.105.577288.

Suga S., Nakao K., Itol H., ... Imura H. (1992). Endothelial production of C-type natriuretic peptide and its marked augmentation by transforming growth factor-beta. J. Clin. Invest., 90 (3), 1145-1149. doi: 10.1172/JCI115933.

Del Ry S., Cabiati M., Vozzi F., . Mattii L. (2011). Expression of C-type natriuretic peptide and its receptor NPR-B in cardiomyocytes. Peptides, 32(8), 1713-1718. doi: 10.1016/j.peptides.2011.06.014.

Lara-Pezzi E., Felkin L. E., Birks E. J., ... Barton P. J. R. (2008). Expression of follistatin related genesis altered in heart failure. Endocrinology, 149 (11), 5822-5827. doi: 10.1210/en.2008-0151.

Honse S. L., Wang J., Gastro A. M., ... Ornitz D. M. (2015). Fibroblast growth factors is an essential cardioprotector factor in a closed-chest model of cardiac ischemia-reperfusion injury. Physiology Rep., 3(1), 12278. doi: 10.14814/phy2.12278.

Frost R. J., Engelhard S. A. (2007). A secretion trap screen in yeast identifies protease inhibitor 16 as a novel antihypertrophic protein secreted from the heart. Circulation, 116 (16), 1768-1775. doi: 10.1161/ CIRCULATIONAHA. 107.696468.

Wang T., Lin J., McDonald C., ... Pei L. (2017). GDF15 is a heart-derived hormone that regulates body growth. EMBO Mol. Med., 9 (8), 1150-1164. doi: 10.15252/ emmm.201707604.

Luan H. H., Wang A., Hillard B. K., . Medzhitov R. (2019). GDF15 is an inflammation-induced central mediator of tissue tolerance. Cell, 178 (5), 1231-1244. doi: 10.1016/j.cell.2019.07.033.

Xu J., Kimball T. R., Lorenz J. N., ... Molkentin J. D. (2006). GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation. Circ. Res., 98 (3), 342-350. doi: 10.1161/01. RES.0000202804.84885.d0.

Patel S., Alvarez-Guaita A., Melvin A., ... O'Rahilly S. (2019). GDF15 provides an endocrine signal of nutritional stress in mice and humans. Cell Metab., 29 (3), 707-718. doi: 10.1016/j.cmet.2018.12.016.

Locke A. E., Kahali B., Berndt S. T., ... Speliotes E. K. (2015). Genetic studies of body mass index yield new insights for obesity biology. Nature, 518 (7538), 197206. doi: 10.1038/nature14177.

Yang L., Chand C. C., Sun Z., ... Jorgensen S. B. (2017). GFRAL is the center for GDF15 and is required for the anti-obesity effects of the ligand. Nat. Med., 23 (10), 1158-1166. doi: 10.1038/nm.4394.

Millican S. E., Lin-Schmidt X., Chin C. N., ... Rangwala S. M. (2017). GFRAL is the receptor for CDF 15 and the ligand promotes weight loss in mice and nonhuman primates. Nat. Med., 23 (10), 1150-1157. doi: 10.1038/ nm.4392.

Li J. J., Liu J., Lupino K., ... Pei L. (2018). Growth differentiation factor 15 maturation requires proteolytic cleavage by PCSK3, -5, and -6. Mol. Cell Biol., 38 (21), 00249-18. doi: 10.1128/MCB.00249-18.

Lindmark F., Zheng S. L., Wiklund F., ... Xu J. (2004). HGD polymorphism in macrophyze-inhibitirs cytokine-1gene associated with prostate cancer. S. Netl. Cancer Inst., 96 (16), 1248-1254. doi: 10.1093/jnci/djh227.

Schmitz J., Owyang A., Oldhman F., ... Kastelein, R. A. (2005). Il-33, an interleukin-1-like cytokine that signals via the IL-1 receptor -related protein ST2 and induces T helper type 2-associated cytokine. Immunity, 23 (5), 479-490. doi: 10.1016/j.immuni.2005.09.015.

Kaufmann W., Wambach G. (Eds.) (2012). Endocrinology of the heart (1st ed.). N-Y: Springer.

Kliewer S. A., Mangelsdorf D. J. (2019). A dozen years of discovery: insights into the physiology and pharmacology of FGF21. Cell Metabolism, 29(2), 246253. doi.org/10.1016/j.cmet.2019.01.004.

Kramer H. J., Meyer-Lehnert H., Predel H. G. (1989). Natriuretic hormones: endogenous Na-K-ATPase inhibitor(s) and atrial natriuretic peptide. In: W. Kaufmann, G. Wambach. (Eds) Endocrinology of the heart. Berlin, Heidelberg: Springer. doi: org/10.1007/978-3-642-83858-3_9.

Lee S. J., McPherron A. C. (2001). Regulation of myostatin activity and muscle growth. Proc. Natl. Acad. Sci USA, 98 (16), 9306-9311. doi: 10.1073/ pnas.151270098.

Wolfman N. M., McPherron A. C., Pappano W. N., ... Laragh J. H. (2009). Left ventricular hypertrophy in human essential hypertension. Clin. Sci., 118 (2), 137145. doi: 10.1161/01.hyp.9.2_pt_2.ii53.

Manabe I., Shindo T., Nagai R. (2002). Gene expression in fibroblast and fibrosis: involvement in cardiac hypertrophy. Circ. Res., 91(12), 1103-1113. doi: 10.1161/01.res.0000046452.67724.b8.

McPherzan A. C., Lawler A. M., Lee S. J. (1997). Regulation of skeletal muscle mass in mice by a new

TGF-beta superfamily member. Nature, 387 (6628), 83-90. doi: 10.1038/387083a0.

Tadimalla A., Belmont P. J., Thuerauf D. J., ... Glembotski C. C. (2008). Mesencephalic astrocyte-derived neurotrophic factor is an ischemia-inducible secreted endoplasmic reticulum stress response protein in the heart. Circ. Res., 103 (11), 1249-1258. doi: 10.1161/CIRCRESAHA.108.180679.

Fejzo M. S., Sazonova O. V., Sathirapongsasuti J. F., ... Patrick M. (2018). Mullin placenta and appetite genes GDF15 and IGFBP7 are associated with hyperemesis gravidarum. Nat. Commun., 9 (1), 1178. doi: 10.1038/ s41467-018-03258-0.

Von Haehling S., Ebner N., dos Santos M., Springer J., Anker S. D. (2017). Muscle wasting and cachexia in heart failure: mechanisms and therapies. Nat. Rev. Cardiol., 14 (6), 323-341. doi: 10.1038/nrcardio.2017.51.

Chen W.-Y., Hong J., Cannon J., Kakkar R., Lee R. T. (2015). Myocardial pressure overload induces systemic inflammation through endothelial cell IL-33. Proc. Natl. Acad. Acad. Sci. USA, 112 (23), 7249-7254. doi: 10.1073/pnas.1424236112.

George I., Bish L. T., Kamalakkannan G., ... Maybaum S. (2010). Myostatin activation in patients with advanced heart failure an after mechanical unloading. Eng. J. Heart. Fail., 12 (5), 444-453. doi: 10.1093/eurjhf/ hfq039.

Scharma M., Kambadur R., Mattheus K. G., ... Bass J. J. (1999). Myostatin, a transforming growth factor-beta superfamily members, is expressed in heart muscle and is unregulated in cardiomyocytes after infarct. J. Cell Physiol., 180 (1), 1-9. doi: 10.1002/(SICI)1097-4652(199907)180:1<1::AID-JCP1>3.0.CO;2-V.

Hsu J. Y., Crawley S., Chen M., ... Allan B. B. (2017). Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature, 550 (7675), 225-259. doi: 10.1038/nature24481.

Ogawa T., de Bold A. J. (2014). The heart as an endocrine organ. Endocr. Connect., 3(2), R31-R44. doi: 10.1530/EC-14-0012.

Owens A. T., Brozena S., Jessup M. (2017). Neprilysin inhibitors: emerging therapy for heart failure. Annu. Rev. Med., 68, 41-49. doi: 10.1146/annurev-med-052915-015509.

Chen S., Cao P., Dong N., ... Wu Q. (2015). PCSK6-mediated corin activation is essential for normal blood pressure. Nat. Med., 21 (9), 1048-1053. doi: 10.1038/ nm.3920.

Planavila A., Redondo-Angulo I., Villarroya F. (2015). FGF21 and cardiac physiopathology. Front Endocrinol (Lausanne), 6, 133. doi: 10.3389/fendo.2015.00133.

Potter L. R., Abbey-Hoach S., Dickey D. M. (2006). Natriuretic peptides, their receptors and cyclic guanosine nonfhosphate - dependendent signality functions. Endoc. Rew., 27 (1), 42-47. doi: 10.1210/er.2005-0014.

Schisler J. C., Land C. H., Willis M. (Eds.) (2016). Endocrinology of the heart in health and disease: integrated, cellular and molecular endocrinology of the heart (1st ed.). N-Y: Academic Press.

Mastri M., Shah Z., Hsieh K., . Lee T. (2014). Secreted Frizzled-related protein 2 as a target in antibiotic therapeutic intervention. Am. J. Physiol. Cell Physiol., 306 (6), 531-539.

Ueland T., Caidahl K., Askevold E. T., . Aukrust P. (2020). Secreted frizzled-related protein 3 (eFRP3) in acute coronary symptoms. Int. J. Cardiol., 190, 217-219. doi: 10.1016/j.ijcard.2015.03.401.

Shen X., Xhang X., Xu Y., ... Jia W. (2018). Serum FGF21 associated with future cardiovascular events in patients with coronary artery disease. Cardiology, 139, 212-218. doi.org/10.1159/000486127.

Granja J. M., Klemm S., McGinnis L. M., ... Greenleaf W. J. (2019). Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia. Nat. Biotechnol, 37 (12), 1458-1465. doi: 10.1038/s41587-019-0332-7.

Hu P., Lin J., Zhao J., ... Pei L. (2018). Single nucleus transcriptomic survey of the call diversity and functional maturation in postural mammalian hearts. Genes Develop., 32 (19-20), 1344-1357 doi: 10.1101/ gad.316802.118.

Pankow K., Wang Y., Gembardt F., ... Walther T. (2007). Successive action of meprin A and neprilysin catabolizes B-type natriuretic peptide. Circ. Res., 101 (9), 875-882. doi: 10.1161/circresaha.107.153585.

Gaich G., Chien J. Y., Fu H., ... Moller D. E. (2013). The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 18 (3), 333-340. doi: 10.1016/j.cmet.2013.08.005. PMID: 24011069.

Richter M., Lautze H. J., Walther T., Braun T., Kostin S., Kubin T. (2015). The failing heart is a major source of circulating FGF23 via oncostatin M receptor activation. J Heart Lung Transplant., 34 (9), 1211-1214. doi: 10.1016/j.healun.2015.06.007.

Wang X., Yang X., Sun K., . Hui R. (2009). The haplotype of the growth-differentiation factor 15 gene is associated with left ventricular hypertrophy in human essential hypertension. Clin. Sci. (Lond.), 118 (2), 137145. doi: 10.1042/CS20080637.

Emmerson P. J., Wang F., Du Y., ... Wu X. (2017). The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat. Med, 23 (10), 1215-1219. doi: 10.1038/nm.4393.

Tsai V. W. W., Husani Y., Sainsbury A., Brown D. A., Breit S. N. (2018). The MIC-1/GDF15-GFRAL pathway in energy homeostasis: implications for obesity, cachexia and other associated diseases. Cell Metab., 28 (3), 353-268. doi: 10.1016/j. cmet.2018.07.018.

Mastukawa W., Takahashi N., Pandey K. N., ... Smithies O. (1999). The natriuretic peptide clearance locally modulates the physiological effects of the natriuretic peptide systems. Proc. Nat. Acid. Sci. USA, 96 (13), 7403-7408. doi: 10.1073/ pnas.96.13.7403.

Bauskin A. R., Zhang H. P., Fairlie W. D., ... Breit S. N. (2000). The propeptide of macrophage inhibitory cytokine (MIC-1), a TGF-beta superfamily member, acts as a quality control determinant for correctly folded MIC-1. EMBO J. 19 (10):2212-20. doi: 10.1093/ emboj/19.10.2212.

Banskin A. R., Jiang L., Luo X. W., Wu L., Brown D. A., Breit S. N. (2010). The TNF-beta superfamily cytokine MIC-1/GDF15: secretory mechanisms facilitate creation of latent stromal stores. J. Interferon. Cytokine, 30 (1), 389-397. doi: 10.1089/jir.2009.0052.

Wadlert K. C., Kemp F. T., Wallentin L. (2017). Growth differentiation factor 15 as a biomarker in cardiovascular disease. Clin. Chem., 63 (1), 140-151. doi: 10.1373/ clinchem.2016.255174.

Zhao J. S., Pei L. (2020). Cardiac endocrinology heart-derived hormones in physiology and disease. JACC: Basic to translational science, 5 (9), 949-960. doi. org/10.1016/j.jacbts.2020.05.007.

Published

2021-08-11

How to Cite

Mintser, O. P., Zalisky, V. M., & Bolgov, M. Y. (2021). HEART-DERIVED HORMONES: BIOMEDICAL INTERACTION OF DISTANT, PARACRINE AND AUTOCRINE ACTION. Medical Informatics and Engineering, (3), 4–17. https://doi.org/10.11603/mie.1996-1960.2020.3.11603

Issue

Section

Articles