THE NETWORK BASIS OF THE FUNCTIONING OF BIOLOGICAL OSCILLATORS — OSCILLATOR CIRCUIT TRIGGERS IN CELLS AND CELL-FREE SYSTEMS. ANALYTICAL REVIEW

Authors

  • O. P. Mintser Shupyk National Medical Academy of Postgraduate Education https://orcid.org/0000-0002-7224-4886
  • V. M. Zaliskyi Shupyk National Medical Academy of Postgraduate Education
  • L. Yu. Babintseva Shupyk National Medical Academy of Postgraduate Education

DOI:

https://doi.org/10.11603/mie.1996-1960.2019.1.10110

Keywords:

biological oscillators complicated network, systemic biology, synthetic biology, fundamental mechanisms, triggers

Abstract

Background. An analytical study examines experimental and theoretical studies in the field of quantitative system analysis of the role of biological oscillators — oscillatory circuit triggers in cells and cell-free systems. Biological oscillators control bursts of neuronal activity, cell cycles, sleep and wake patterns, as well as many other important processes in living systems. It is assumed that quantitative studies of the functioning of biological oscillators will help in the prevention and treatment of many human diseases.

Results. Over the past decades, the development of methods in the field of systemic and synthetic biology has made it possible to outline ways to decipher the fundamental mechanisms underlying the functioning of these oscillators. It is shown that systemic and synthetic biology acquires significant importance in further determining the mechanisms of functioning of biological oscillators. Although research on the functioning of biological oscillators has made some progress in identifying features of the functioning of natural and artificial oscillators that increase the reliability and quality of rhythms control of biological reactions, however, the role of many other minor modifications remains poorly understood. To understand it, further theoretical and experimental research is needed.

Conclusions. The role of developing tools and methods of bioinformatics becomes extremely important in promoting systemic and synthetic biology, and the already established quantitative approaches of systemic and synthetic biology in a transdisciplinary approach involving modern techniques of other fields of knowledge.

References

Andronov, A. A., Witt, A. A., Khaikin, S. E. (1981). Teoriya kolebaniy [Theory of Oscillations]. Moscow: Science. [In Russian].

Bayramov, Sh. K. (2005). Novyie matematicheskie modeli biohimicheskih ostsillyatorov [New mathematical models of biochemical oscillators]. Biohimiya (Biochemistry). 70; 12, 1673-1681. [In Russian].

Klinshov, V. V., Nekorkin, V. N. (2013). Sinhronizatsiya avtokolebatelnyih setey s zapazdyivayuschimi svyazyami [Synchronization of self-oscillatory networks with retarded connections]. Uspehi fizicheskih nauk (Uspekhi Fiz. Nauk), 183; 12, 1323-1336. [In Russian].

Lavrova, A. I. (2018). Metod dominantnogo parametra v modelirovanii i analiza dinamiki biologicheskih ostsillyatorov, 03.01.02 Biofizika, Avtoref. na soiskanie uch. st. Dok. fiz.-mat. nauk [The method of the dominant parameter in modeling and analysis of the dynamics of biological oscillators, 03.01.02 Biophysics, Author. for the Degree of the Doctor of Phys.-Mat. Sciences]. St. Petersburg. [In Russian].

Patrushev, Ye. M., Nozdryuhin, I. S. (2015). Ispolzovanie avtokolebatelnyih sistem s haoticheskoy dinamikoy v sistemah peredachi i obrabotki slabyih izmeritelnyih signalov na fone preobladayuschih pomeh [Use of auto-oscillatory systems with chaotic dynamics in the systems for transmitting and processing weak measuring signals against the background of prevailing interference]. Polzunovskiy almanah (Polzunovsky almanac), 1, 142143. [In Russian].

Chernysheva, M. P. (2016). Vremennaya struktura biosistem i biologicheskoe vremya [Time structure of biosystems and biological time]. St. Petersburg: SUPER. [In Russian].

Anati, R. C., Lee, Y., Sato, T. K. et al. (2014). Machine learning helps identify CHRONO as a circadian clock component. PLoS Biol., 12, e1001840.

Ainsworth, M., Lee, S, Cunningham, M. O. et al. (2012). Rates and rhythms: a synergistic view of frequency and temporal coding in neural network. Neuron, 75, 572-583.

Atkinson, M. R., Savage, M. A., Myers, J. T. et al. (2003). Development of genetic circuit exhibiting toggle switch or oscillatory behavior in E.coli. Cell, 113, 597-607.

Antioch, M. P., Song, E. J., Chang, A. M. et al. (1997). Functional identification of the mouse circadian clock gene by transgenic BAC rescue. Cell, 89, 655-667.

Barkai, N., Leibler, S. (2000). Circadian clocks limited by noise. Nature, 403, 267-268.

Batchelor, E., Lower, A., Mock, C. et al. (2011). Stimulus-dependent dynamics of p53 in single cells. Mol. Syst. Biol., 7, 488.

Bell - Pedersen, D., Cassone, V. M., Earnest, D. J. et al. (2005). Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat. Rew. Genet., 6, 544-556.

Brown, H., Difrancesco, D., Noble, S. (1979). Cardiac pacemaker oscillations and its modulation by autonomic transmitters. J. Exp. Biol., 81, 175-204.

Cai, L., Dalal, C. K., Elowitz, M. B. (2008). Frequency - modulated nuclear loealirafion bursts coordinate gene regulation. BMC syst. Biol., 2, 75.

Cashera, F., Bedau, M. A., Buchanan, A. et al. (2011). Coping with complexity: machine learning optimization of cell-free protein synthesis. Biotechnol. Bioeng., 108, 2218-2228.

Castillo - Hair, S. M., Villota, E. R., Coronado, A. M. (2015). Design principles for robust oscillatory behavior. Syst. Synth. Biol., 9, 125-133.

Chen, A. H., Lobkowicz, D., Young, V. et al. (2015). Transplant ability of circadian clock to a non corcadion organism. Sci. Adv., 1, e1500358.

Chance, B., Hess, B., Betz, A. (1964). DPNH oscillations in a cell-free extract of S. carlsbergensis. Biochem. Biophis. Res. Commun., 16, 182-187.

Chang, J. B., Ferrell, J. B. (2013). Mitotic trigger waves and the spatial coordination of the Xenopus cell cycle. Nature, 500, 603-607.

Crosthwaite, S. K., Dunlap, J. C., Loros, J. J. (1997). Neurospora wc-1 and wc-2 transcription, photo response and origins of circadian rhythmicity. Science, 276, 763-769.

Danino, T., Mondragon - Palomino, O., Tsimring, L., Hasty, J. A. (2010). A synchronized quorum of genetic clocks. Nature, 463, 326-330.

Dart, A. (2016). Tumor genesis: cancer goes tick tock. Nat. Rev. Cancer., 16, 409.

Dies, M., Galera-Laporta, L., Garcia-Ojalvo, J. (2016). Mutual regulation causes co - evhainment between a synthetic oscillatory and the bacterial cell cycle. Integr. Biol., 8, 533-541.

Feillet, C., van der Horst, G. T., Levi, F. et al. (2015). Coupling between the circadian clock and cell cycle

oscillators: implication for healthy cells and malignant growth. Front Neural, 6, 96.

Ferrell. J. E., Tsai, T. Y., Yang, Q. (2011). Modeling the cell cycle: who do certain circuit oscillate? Cell, 144, 874-885.

Fitz Hugh R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophys J., 1, 445-466.

Flowitz, M. B., Leibler, S. (2000). A synthetic oscillatory network транспирационных регуляторов. Nature, 403, 335-338.

Forster, A. C., Church, G. M. (2007). Synthetic biology projects in vitro. Genome Res., 17, 1-6.

Friesen, W. O., Block, G. M. (1984). What is a biological oscillator? Am. J. Physiol., 246, R847-R853.

Fung, E., Wong, W. W., Suen, J. K. et al. (2005). A synthetic gene-metabolic oscillator. Nature, 435, 118-122.

Fujii, T., Rondelez, Y. (2013). predator-prey molecular ecosystems. ACS Nano, 7, 27-34.

Gallego, M., Virshup, D. M. (2007). Post-translational modifications regulate the trebling of the circadian clock. Net. Rev. Mol. Cell. Biol., 8, 139-148.

Helen, L., Anderson, G. A., Ferrell, J. E. (2014). Spatial trigger waves: positive feedback gets you a long way. Mol. Biol. Cell., 25, 3486-3493.

Gerisch, G. (1968). Cell aggregation and differentiation in dictyostelium. Curr. Top. Dev. Biol., 3, 157-197.

Gerisch, G., Fromm, H., Huesgen, A. et al. (1975). Control of cell-contact sites by cyclic AMP pulses in ditterentiatiny dictyostelium cells. Natuure, 255, 547-549.

Ghosh, A., Chance, B. (1964). Oscillations of glycolytic intermediates in yeast cells. Biochem. Biophys. Res. Commun., 16, 174-181.

Glass, L. (2001). Synchronization and rhythmic processes in physiology. Nature, 410, 277-284.

Goldbeter, A. (Eds). (2007). Special Volume in Memory of illya Prigogine: Advances in Chemical Chysics. New York: John Wiley Sons Inc. (Biological rhythms as Temporal Dissipative Strueture).

Goodwin, B. C. (Ed) (1963). A dynamic theory of cellular control processes. New York: Academic Press.

Guantes, R., Poyatos, J. F. (2006). Dynamical principles of two-component genetic oscillators. PLOS Computational Biology, 2, E30.

Hasatanik, K., Leocmach, M., Genot, A. J. et al. (2013). High-throughput and long-term observation of comport - winterized biochemical oscillators. Chem. Commun. (Cambrig), 49, 8090-8092.

Hemblen, M. J., White, N. E., Emery, P. T. J. et al. (1998). Molecular and behavioral analysis of four period mutants in drosophila melanogaster encompassing extreme short, hovel long, and unorthodox arrhythmic types. Genetics, 149, 165-178.

Higgins, J. (1964). Alchemical mechanism for oscillation of glycolytic intermediates in yeast cells. Proc. Natl. Acad. Sci USA, 51, 989-994.

Hodgkin, A. L., Huxley, A. F. (1952). Current carried by sodium and potassium is Heroogli the membrane of the giant axon of Loligo. J. Physiol., 116, 449-472.

Hodgkin, A. L., Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 117, 500-544.

Hussain, F., Gupta, C., Hiening, A. J. et al. (2014). Engineering temperature compensation in a synthetic genetic clock. Proc. Natl. Acad. Sci. USA, 111, 972-977.

Isomura, A., Kageyama, R. (2014). Ultradian oscillations and pulses: coordinating cellular responses and cell fate decisions. Development, 141, 3627-3636.

Kim, J., White, K. S., Winfree, E. (2016). Construction of an in vitro bitable circuit from synthetic transcriptional switches. Mal. Syst. Biol., 2, 68.

Li, Z., Yang, Q. (2018). Systems and synthetic biology approaches in undestaudiny biological oscillators. Quant Biol., 6 (1), 1-14.

Liang, J., Luo, Y., Zhao, H. (2011). Synthetic biology: putting synthesis into biology wiley interdiscip. Rev. Syst. Biol. Med., 3 (1), 7-20.

Liu, Y., Tsinoremas, N. F., Johuson, C. H. et al. (1995). Circadian orchestration of gene expression in cyanobacteria. Genens Dev., 9, 1469-1478.

Liu, N., Prioris, G. (2008). Disruption of calcium homeostasis and arrhythmogenesis induced by mutations in the cardiac ryanodine receptor and calsequestrin. Cardiovasc. Res., 77, 293-301.

Lohka, M. J., Hayes, M. K., Maller, J. L. (1988). Purification of maturation-promoting factor, an in fraccllalar regulator of early mitotic events. Proc. Natl. Acad. Sci. USA, 85, 3009-3013.

Mara, A., Holley, S. A. (2007). Oscillators and the emergence of tissue organization during rebrabish gametogenesis. Trends Cell Biol., 17, 593-599.

Millins, A., Ueda, H. R. (2017). System biology - derived discoveries of intrinsic clocks. Front Neurol., 8, 25.

Millar, A. J., Kay, S. A. (1997). The genetics of photo transduction and circadian rhythms in Arabinopsis. Bio Assays., 19, 209-214.

Mondragon - Palomino, U., Danino, I., Selimkhanov, J. et al. (2011). Entrainment of a population of synthetic genetic oscillators. Science, 333, 1315-1319.

Mukherji, S.van oudenaarden A. (2009). Synthetic biology: understanding biological desigual from synthetic circuits. Nat. Rev. Genet., 10, 859-871.

Nakajima, M., Imai, K., Ito, H. et al. (2005). Reconstruction of circadian of cyanobacteria Kai C. Science, 308, 414-415.

Nelson, D. E., Ihekwaba, A. E., Elliott, M. et al. (2004). Oscillations in NI-kb signally control the dynamics of gene expression. Science, 306, 704-708.

Noman, N., Monjo, T., Moscato, P. et.al. (2015). Evolving robust gene regulatory networks. PLOS One, 10, e0116258.

Novak, B., Tpson, J. J. (2008). Design principles of biochemical oscillators. Nat. Mol. Cell Biol., 9, 981-991.

Oates, A. C., Morelli, L. G., Ares, S. (2002). Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development, 139, 625-639.

Olsen, O. F., Design, H. (1978). Oscillatory kinetics of the peroxidase- oxidase reactions in an open system. Biochim. Biophys. Acta., 523, 321-334.

O'Neill, J. S., Feeney, K. A. (2014). Circadian redox and metabolic oscillation in mammalian system. Autacoid Redox Signal, 20 (18), 2966-2981.

Pomerening, J. R., Sontad, E. D., Ferrell, J. E. (2003). Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc 2. Nat. Cell Biol., 5, 346-351.

Prigogine, I., Lefever, R., Goldbeter, A. et al. (1969). Symmetry breaking Instability in biological systems. Nature, 223, 913-916.

Prindle, A., Samayoa, P., Raznikov, I. et al. (2011). A sensing array of radically coupled genetic "bio pixels". Nature, 481, 39-44.

Purcell, O., Savery, N. J., Grierson, C. S. et al. (2019). A comparative analysis of synthetic genes oscillators. J. R. Soe. Interface, 7 (52), 1503-1524.

Pye, K., Chance, B. (1966). Sustained sinusoidal oscillations of reduced pyridine nucleotide in a cell-free extract of S. carlsbergensis. Proc. Natl. Acad. Sci. USA, 55, 888-894.

Rust, M. J., Markson, J. S., Lane, W. S. et al. (2007). Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science, 318, 809-812.

Scott, S. R., Hasty, J. (2016). Quorum sensing communication modules for microbial consortia. ACS Synth. Biol., 5, 969-977.

Semenov, S. N., Kraft, L. J., Ainla, A. et al. (2016). Autocatalytic, bitable, oscillatory networks of biologically relevant organic reactions. Nature, 537, 656-660.

Sevim, V., Gong, X., Socolar, J. E. (2016). Reliability of transcriptional cycles and yeast cell-cycle oscillator. PLOS Comput. Biol., 6, e/000842.

Shitiri, E., Varlakos, A. V., Cho, H. S. (2018). Biological oscillators and Nano networks. Sensore, 18 (5), E1544.

Stricker, J., Cookson, S., Bennett, M. R. et al. (2008). A fast, robust and final synthetic gene oscillator. Nature, 456, 516-519.

Sudakin, V., Ganoth, D., Dahan, A. et al. (1995). The cyclostome, a large complex containing cyclic-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol. Biol. Cell., 6, 185-197.

Tan, C., Sanrabh, S., Brucher, M. P. et al. (2013). Molecular crowding shapes gene expression in syntactic cellular nano systems. Nat. Nano-technol., 8, 602-608.

Tigges, M., Marguer-Lago, T. T., Stelliny, J. et al. (2009). A tunable synthetic mammalian oscillator. Nature, 457, 309-312.

Tigges, M., Denervand, N., Graber, D. et al. (2010). A synthetic low-frequency mammalian oscillator. Nucleic Aeid. Res., 38, 2702-2711.

Toettcher, J. E., Mock, C., Batchelor, E. et al. (2010). A synthetic-natural hybrid oscillator in human cells. Proc. Natl. Acad. Sci. USA, 107, 17047-17052.

Tomida, T., Takekawa, M., Saito, H. (2015). Oscillation of p53 activity controls etticient pro-inflammatory gene expression. Nat. Commun., 6, 8350.

Trejo, Banos D., Millar, A. J., Sangninetti, G. A. (2015). Bayesian approach for structure learning in oscillating regulatory network. Bioinformatics, 31, 3617-3624.

Tsai, T. Y., Choi, Y. S., Ma, W. et al. (2000). Robust, tunable biological oscillations from interlinked possible and negative feedback loops. Science, 321, 126-129.

Tyson, J. J., Novak, B. (2010). Functional mobiles in biochemical reaction networks. Annu. Rev. Phys. Chem., 61, 219-240.

Wang, L. S., Wu, F., Flores, K. et al. (2016). Build to understand: synthetic approaches to biology. Integr. Biol. (Camb)., 8 (4), 394-408.

Wang, F., Fan, C. (2016). DNA reaction networks: providing a panoramic view. Nat. Chew., 8, 738740.

Yang, Q., Ferrell, J. E. (2013). The Cdk1- APC/C cell creel oscillator circuit functions as a time-delayed, ultrasensitive switch. Nat. Cell. Biol., 15, 519-525.

Zambrano, S., De Toma, I., Pitter, A. et al. (2016). NF-kb oscillations translate into functionally related patterns of gene expression. Elife, Jan 14, 5, e09100.

Published

2019-05-10

How to Cite

Mintser, O. P., Zaliskyi, V. M., & Babintseva, L. Y. (2019). THE NETWORK BASIS OF THE FUNCTIONING OF BIOLOGICAL OSCILLATORS — OSCILLATOR CIRCUIT TRIGGERS IN CELLS AND CELL-FREE SYSTEMS. ANALYTICAL REVIEW. Medical Informatics and Engineering, (1), 59–72. https://doi.org/10.11603/mie.1996-1960.2019.1.10110

Issue

Section

Articles