TRANSFORMATION OF KNOWLEDGE OF ATHEROGENESIS: THE USE OF NANO-ASSOCIATED BIO-TECHNOLOGIES AND NETWORK ANALYSIS
DOI:
https://doi.org/10.11603/mie.1996-1960.2019.1.10106Keywords:
atherosclerosis, atherogenesis, nanoscale compounds, inflammation, signalling, liver receptor LXRs, modeling of atherogenesisAbstract
Background. The issues of changing knowledge of the occurrence, development and prevention of atherosclerosis are considered. It is shown that the concept of the role of inflammation as a CVD core is currently of paramount importance.
Materials and methods. Results. Postulated that microbes can influence atherogenesis in various direct or indirect ways and, therefore, they should be considered as factors contributing to the progression of atherosclerosis. Thus, the concept contributes to further research in this area. It is emphasized that the hepatic receptor LXRs lie at the intersection of lipid metabolism, innate immunity, inflammation and all the main pathways for the development of atherosclerotic lesions and CVD.
Conclusions. It seems important to focus on the processes of nano-mediated detection and therapeutic control of the development of atherosclerosis using cell targeting (intima macrophages, foam cells, endothelial cells) and processes (neo-hyogenesis, proteolysis, apoptosis, thrombosis, high-density lipoprotein metabolism). (HDL) and inflammation).
References
Mintser, O. P., Zalisky, V. M. (2018). KardIologIchnI aspekti merezhevoYi meditsini [Cardiologic aspects of network medicine]. Medichna informatika ta inzheneriya (Medical Informatics & Engineering), 3, 17-27. [In Ukrainian]. doi: https://doi.org/10.11603/ mie.1996-1960.2018.3.9462.
Hritsai, N. V. (2016). Matematicheskaya model metabolicheskogo protsessa ateroskleroza [Mathematical model of the metabolic process of atherosclerosis]. Ukrainskiy bIomedichniy zhurnal (Ukrainian biomedical journal), 88 (4), 75-84. [In Russian].
Zalessky, V. N., Gavrilenko, T. P. (2008). Autoimmunnyie i immunovospalitelnyie protsessyi pri ateroskleroze, ego nutrientyi profilaktika i terapiya: Monografiya [Autoimmune and immuno-inflammatory processes in atherosclerosis, its nutrients prevention and therapy: Monograph]. Kiev: VIPOL, 591 p. [In Russian].
Zalessky, V. N., Dynnik, O. B. (2007). Koronarnaya tomograficheskaya diagnostika: novyie metodyi vizualizatsii v klinike: Monografiya [Coronary tomographic diagnosis: new methods of imaging in the clinic: Monograph]. Kiev: VIPOL, 277 p. [In Russian].
Zalessky, V. N., Movchan, B. A. (2012). Personalizirovannaya meditsina: perspektivyi ispolzovaniya nanobiotehnologiy [Personalized medicine: the prospects for the use of nano-biotechnology]. Ukrainskiy meditsinskiy zhurnal (Ukrainian Medical Journal), 1 (87), 38-42. [In Ukrainian].
Kozhanova, T. V., Neudakhin, E. V., Zhilina, S. S. et al. (2018). Geneticheskaya predraspolozhennost k razvitiyu ateroskleroza [Genetic predisposition to the development of atherosclerosis]. Arhiv vnutrenney meditsinyi (Archive of Internal Medicine), V. 8: 6, 407-417. [In Russian].
Kuzik, Yu. I. (2016). Ispolzovanie matriksnoy metalloproteinazyi-9 (MMP-9) i eyo tkanevogo ingibitora patomorfologicheskoy diagnostike koronarnoy patologii [The use of matrix metalloproteinase-9 (MMP-9) and its tissue inhibitor pathomorphological diagnosis of coronary pathology]. Patologiya (Pathology), 1 (36), 37-44. [In Russian].
Nasonov, E. A., Popkova, T. V. (2018). Ateroskleroz: perspektivyi protivovospalitelnoy terapii [Atherosclerosis: perspectives of anti-inflammatory therapy]. Terapevticheskiy arhiv (Therapeutic archive), 5, 4-12. [In Russian].
Alimohammadi M., Pichardo-Almarra C., Agu O. (2017). "etal Amultiscale modelling approach to understand atherosclerosis. Proc/ Inst. Mech. Eng. H., 231(5), 378-390. DOI: https://doi.org/10.1177/0954411917697356
Bartneck M., Peters F.M., Warrecha K.T., et al. (2014). Liposomal encapsulation of dexamethasone neodulates cytotoxicity, inflammatory cytokine response, and migratory properties of primary human macrophages. Nanomedicine, 10(6), 1209-1220. DOI: https://doi.org/10.1016/j.nano.2014.02.011
Bjarano J., Navarro Marquer M., M Zavala F., et al.
(2018). Nanoparticles for diagnostic and therapy of atherosclerosis and myocardial infarction. Theranostics, 8 (7), 4710-4732. DOI: https://doi.org/10.7150/thno.26284
Boyer C., Whittaker M.R., Bulmus V., et al. (2010). The design and utility of polymer stabilized iron oxide nanoparticles for nanomedicine applications. NPG Asia Materials, 2, 23-30. DOI: https://doi.org/10.1038/asiamat.2010.6
Boyle E.C., Sedding D.G., Haverich A. (2017). Targeting vasa vasorum dysfunction to prevent atherosclerosis. Vascul Pharmacol, 96-98, 5-10. DOI: https://doi.org/10.1016/j.vph.2017.08.003
Buynkhatipoglu K., ClyneA.M. (2011). Superparamagnetic iron oxide nanoparticles changes endothelial cell morphology and mechanics via reactive oxygen species. J. Biomed. Mater. Res. A., 96 (1), 186-195.
Cagnin S., Biscnola M., Patuzzo C., et al. (2009). Reconstruction and functional analysis of altered molecular pathways in human atherosclerotic arteries. BMC Genomies, 10, 13. DOI: https://doi.org/10.1186/1471-2164-10-13
Chalmers A.D., Bursill C.A., Myerscough M.R. (2017). Nonlinear dynamics of early atherosclerotic plague formation may determined the efficacy of high density lypoproteins (HDLS) in plaque regression. PLoS One, 12 (11), e0187674. DOI: https://doi.org/10.1371/journal.pone.0187674
Chacko A.M., Hood E.D., Zem B.J., et al. (2011). Targeted Nanocarriers for imaging and therapy of vascular inflammation. Curr. Opin. Colloid Interface Sci., 16(3), 215-227. DOI: https://doi.org/10.1016/j.cocis.2011.01.008
Chen L.L., Yang L. (2017). ALUternafive regulation for gene expression. Trends Cell Biol., 27 (7), 480-490. DOI: https://doi.org/10.1016/j.tcb.2017.01.002
Cheng D., Li X., Zhang C., et al. (2015). Detection of vulnerable atherosclerosis plaques with a dual modal Single Photon Emission Computed Tomography. / Magnetic Resonance Imaging probe targeting apoptotic macrophages. ACS Appl. Mater. & Interfaces, 7, 2847-2855. DOI: https://doi.org/10.1021/am508118x
Corti R., Hutter R., Badimon J.J., et al. (2004). Evolution concepts in the trial of atherosclerosis, inflammation and thrombosis. J. Thromb. Thrombolysis, 17 (1), 35-44. DOI: https://doi.org/10.1023/B:THRO.0000036027.39353.70
Cukier A.M., Therond P., Didichenko S.A., et al. (2017). Structure functional relationships in reconstituted HDL: focus on antioxidative activity and cholesterol efflux capacity. Biochem. Biophys. Akta Mol. Cell. Biol. Lipids, 1862 (9), 890-900.
Daskalova E., Baev V., Rusinov V., et al. (2007). 3'VTR located ALU elements: donors of potential miRNA target cites and mediators of network miRNA based regulatory interactions. Evol .Bioinform. Online, 2, 103-120.
De Vries M.R., Quax P.H. (2016). Plaque angiogenesis and its relation to inflammation and atherosclerosis plaque destabilization. Curr. Opin. Lipidol, 27 (5), 499-506. DOI: https://doi.org/10.1097/MOL.0000000000000339
Duivenvoorden R., Tong J., Cormode D.P., et al. (2014). A statin loaded reconstituted high density lipoprotein nanoparticle inhibits atherosclerotic plague inflammation. Nat. Commun., 5, 3065.
El Khatib N., Genieys S., Kazmierczak B., et al. (2009). Mathematical modeling of atherosclerosis as an inflammatory diseases. Philos. Trans. A. Math. Phys. Eng. Sci., 367 (1908), 4877-4886.
El Khatib N., Genieys S., Kazmierczak B., et al. (2012). Reaction diffusion model of atherosclerosis development. J. Math. Biol., 65 (2), 349-374. DOI: https://doi.org/10.1007/s00285-011-0461-1
El Dakdonki M.H., El Bubbon K., Kamat M., et al. (2014). CD44 targeting magnetic gluconanoparticles for atherosclerotic plaque imaging. Pharm. Res., 3, 1426-1437. DOI: https://doi.org/10.1007/s11095-013-1021-8
Emilson V., Thorleifsson G., Zhang B., et al. (2008). Genetics of gene expression and its effect on diseases. Nature, 452 (7186), 423-428.
Fadok V.A., Bratton D.L., Frasch S.C., et al. (1998). The role of phosphatidylserine in recognition of apoptotic cell by phagocytes. Cell Death Differ., 5, 551-562. DOI: https://doi.org/10.1038/sj.cdd.4400404
Getts D.R., Terry R.L., Getts M.T., et al. (2014). Therapeutic inflammatory monocyte modulation using immune modifying microparticles. Sci. Transl. Med., 6 (219), 219ra7.
Gitsiondis G., Chatririsis Y.S., Wolf P., et al. (2017). Combined non invasive assessment of endothelial shear stress and molecular imagine of inflammation for the prediction of inflamed plaque in hyperlipidacmic rabbit cortas. Eur. Heart J. Cardiovasc. Imaging., 18 (1), 19-30. DOI: https://doi.org/10.1093/ehjci/jew048
Gilchrist M., Thorsson V., Li B., et al. (2006). System biology approaches identify ATF3 as a negative regulator of Tall like receptor 4. Nature, 441,173-178. DOI: https://doi.org/10.1038/nature04768
Gonzalez Rodrigner D., Bazakat A.I. (2015). Dynamics of receptor mediated nanoparticle internalization into endothelial cell. PLoS ONE, 10 (4), e0122097. DOI: https://doi.org/10.1371/journal.pone.0122097
Hao W., Friedman A. (2014). The LDL HDL profile determines the risk of atherosclerosis: a mathematical model. PLoS ONE, 9 (3), e90497. DOI: https://doi.org/10.1371/journal.pone.0090497
Harel Adar T., Ben Mordechai T., AmsalemY., et al. (2011). Modulation of cardiac macrophages by phosphatidylserine presenting liposomes improves infarct repair. Proc. Natl. Acad. Sci. USA, 108 (5), 1827-1832. DOI: https://doi.org/10.1073/pnas.1015623108
Holdt L.M., Hoffmann S., Sass K., et al. (2013). Aln element in ANRIL non coding ANA at chromosome 9p21 modulate atherogenic cell function through trans regulation of gene network. PLoS Genet., 9 (7), e1003588. DOI: https://doi.org/10.1371/journal.pgen.1003588
Hossain S.S., Zhang Y., Fu X., et al. (2015). MRI based computational modelling of blood flow and nanomedicine deposition in patients with peripheral arterial diseases. J. R. Soc. Interface, 12 (106), 20150001.
Holzer M., Trieb M., Konya V., et al. (2013). Aging affects high density lipoprotein composition and function. Biochan. Biophys. Acta., 1831 (9), 1442-1448. DOI: https://doi.org/10.1016/j.bbalip.2013.06.004
Hueso M., De Ramon L., Navarro E., et al. (2016). Silencing of CD40 in vivo reduces progression of experimental atherogenesis through an NF kB/miR125 axis and reveals new potential mediators in pathogenesis of atherosclerosis. Atherosclerosis, 255, 80-89. DOI: https://doi.org/10.1016/j.atherosclerosis.2016.11.002
Hueso M., Crnzado J.M., Torras J., et al. (2018). ALUminating the part of atherosclerosis progression. Chaos theory suggest a role for alu repeated is the development atherosclerotic vascular discase. Int. J. Mol. Sci., 19 (6), 1734.
Iversen N.M., Ilondre N.M., SparKs S.M., et al. (2011). Dual use of amphipluilic macromolecules as cholesterol efflux triggers and inhibitors of macrophage athero inflammation. Biomaterials, 32 (32), 8319-8327. DOI: https://doi.org/10.1016/j.biomaterials.2011.07.039
Kaul S., Coin B., Hedayit A., at al. (2004). Rapid reversal of endothelial dysfunction in hypercholesterolemic apolipoprotein E null mice by recombinant apolipoprotein ?.1 (Milano) phospholipid complex. J. Am. Coll. Cardiol., 44 (6), 1311-1319. DOI: https://doi.org/10.1016/j.jacc.2004.06.028
Kelly K.A., Allpat J.R., Tsourkas A., et al. (2005). Detection of vascular adhesion molecule 1 expression using a novel multimodal nanoparticles. Circ. Res., 96, 327-336. DOI: https://doi.org/10.1161/01.RES.0000155722.17881.dd
Kelley W.J., Safari H., Loper Cazares G., et al. (2016). Vascular targeted nanocarriers: design considerations and strategies for successful treatment of atherosclerosis and other vascular diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 8 (6), 909-926. DOI: https://doi.org/10.1002/wnan.1414
Kietselaer B.L., Reutelingsprerger C.P., Heidendal G.A., et al. (2004). Noninvasive detection of plague instability with use of radiolabeled annexin A5in patients with carotid artery atherosclerosis. N. Engl. J. Med., 350, 1472-1473. DOI: https://doi.org/10.1056/NEJM200404013501425
Klecmann R., Verschuren L., van Erk M.J., et al. (2007). Atherosclerosis and liver inflammation induced dietary cholesterol intake: a combined transcrirtomics and metabolomics analysis. Genome Biol., 8 (9), R200.
Kooj M.E., Cappendijk V.C., Cleutjens K.B., et al. (2003). Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo MRI. Circulation., 107, 2453-2458. DOI: https://doi.org/10.1161/01.CIR.0000068315.98705.CC
Lenschner F., Dutta P., Gorbatov R. (2011). Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat. Biotechnol., 29 (11), 1005-1010. DOI: https://doi.org/10.1038/nbt.1989
Li Z.Y., Howarth S.P., Tang T., et al. (2006). How critical is fibrous cap thickness to carotid plaque stability? A flow plaque interaction model. Stroke, 37 (5), 1195-1199.
Libby P., Ridker P.M., Maseri A. (2002). Inflammation and atherosclerosis. Circulation, 105 (9), 1135-1143. DOI: https://doi.org/10.1161/hc0902.104353
Libby P. (2002). Inflamation in atherosclerosis. Nature, 420 (6917), 868-874. DOI: https://doi.org/10.1038/nature01323
Libby P., DiCarli M., Weissleder R. (2010). The vascular biology of atherosclerosis and imaging targets. J. Nucl. Med., 51 (Suppl 1), 33-37. DOI: https://doi.org/10.2967/jnumed.109.069633
Libby P. (2012). Inflammation in atherosclerosis. Artherioscler. Thromb. Vasc. Biol., 32 (9), 2045-2051. DOI: https://doi.org/10.1161/ATVBAHA.108.179705
Lipinski M.J., Frias J.C., Amirbekian V., et al. (2009). Macrophage specific lipid based nanoparticles improve cardiac magnetic resonance detection and characterization of human atherosclerosis. JACC Cardiovasc. Imaging, 2, 637-647. DOI: https://doi.org/10.1016/j.jcmg.2008.08.009
Lobatto M.E., Fayad Z.A., Silvera S., et al. (2010). Multimodal clinical imaging to longitudinally assess a nanomedical anti inflammatory treatment in experimental atherosclerosis. Mol. Farm., 7 (6), 2020-2029. DOI: https://doi.org/10.1021/mp100309y
Lobatto M.E., Fuster V., Fayad Z.A., et al. (2011). Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nat. Rev. Drug. Discow., 4. 10 (11), 835-852. DOI: https://doi.org/10.1038/nrd3578
Luthi A.J., Patel P.C., Ko C.H., et al. (2010). Nanotechnology for seguthetic high density lipoproteins. Trends Mol. Med., 16 (12), 553-560. DOI: https://doi.org/10.1016/j.molmed.2010.10.006
Luthi A.J., Lyssen Ko N.N., Quach D., et al. (2015). Robust passive and active efflux of cellular cholesterol to a designer functional mimic of HDL. J. Lipid. Res., 56 (5), 972-985. DOI: https://doi.org/10.1194/jlr.M054635
Mangin L., Leseche G., Duprey A., et al. (2011). Ventilatory chaos is impaired in carotid atherosclerosis. PLoS ONE, 6, e16297. DOI: https://doi.org/10.1371/journal.pone.0016297
Meng J., Yang D., Jia L., et al. (2012). Impacts of nanoparticles on cardiovascular diseases: modulating metabolism and function of EC. Curr. Drug. Metab., 13 (8), 1123-1129. DOI: https://doi.org/10.2174/138920012802850056
Moore K.J., Sheedy T.J., Fisher E.A. (2013). Macrophages on atherosclerosis: a dynamic balance. Nat. Rev. Immunol., 13 (10), 709-721. DOI: https://doi.org/10.1038/nri3520
Morishige K., Kacher D.F., Libby P., et al. (2010). High resolution magnetic resonance imaging enhanced with superparamagnetic nanoparticles measures macrophage burden in atherosclerosis. Circulation, 122, 1707-1715. DOI: https://doi.org/10.1161/CIRCULATIONAHA.109.891804
Nahrendorf M., Jaffer F.A., Kelly K.A., et al. (2006). Noninvasive vascular cell adhesion molecule 1 imaging identifies inflammation activation of cells in atherosclerosis. Circulation, 114, 1504-1511. DOI: https://doi.org/10.1161/CIRCULATIONAHA.106.646380
Nahrendorf M., Waterman P., Thurber G., et al. (2009). Hybrid in vivo FMT CT imaging of protease activity in atherosclerosis with customerized nanosensors. Atheroscler. Tromb. Vasc. Biol., 29 (10), 1444-1451. DOI: https://doi.org/10.1161/ATVBAHA.109.193086
Patel S.K., Janjic J.M. (2015). Macrophage targeted theranostics as personalized nanomedicine strategies for inflammatory diseases. Theranostics, 5 (2), 150-172. DOI: https://doi.org/10.7150/thno.9476
Peters D., Kastantin M., Katamrajn V.R., et al. (2009). Targenting atherosclerosis by using modular, multifunctional micelles. Proc. Natl. Acad. Sci. USA, 106 (24), 9815-9819. DOI: https://doi.org/10.1073/pnas.0903369106
Pirro M., Simental Mendia L.E., Bjanconi U., et al. (2019). Effect of statin therepy on arterial wall inflammation based on 18 F FDG PET/CT: a systematic review and meta analysis of interventional studies. J. Clin. Med., 8 (1), 118.
Qin J., Peng C., Zhag B., et al. (2014). Noninvasive detection of macrophage in atherosclerotic lesions by computed tomography enhanced with PEGylated gold nanoparticles. Int. J. Nanomedicine, 9, 5575-5590.
Quillard T., Croce K., Jaffar F.A., et al. (2011). Molecular imagine of macrophage protease activity in cardiovascular inflammation in vivo. Thromb. Haemostas, 105 (5), 828-836. DOI: https://doi.org/10.1160/TH10-09-0589
Quillard T., Croce K.J. (Eds.) (2015). Cardiovascular imagine: Pathobiology and mechanisms of atherosclerosis. Springer, 3-38.
Ramsey S.A., Klemm S.L., Zak D.E., et al. (2008). Uncovering a macrophage transcriptional program by integrating evidence from motif scanning and expression dynamics. PLoS Comput. Biol., 4 (3), e1000021. DOI: https://doi.org/10.1371/annotation/1c55be5f-ecd7-49be-91c1-91881be60297
Ramsey S.A., Gold E.S., Aderem A. (2010). A system biology approch to understanding atherosclerosis. EMBO Mol. Med., 2 (3), 79-89. DOI: https://doi.org/10.1002/emmm.201000063
Rosenson R.S., Brewer H.B., Ansell B.J., et al. (2016). Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat. Rev. Cardiol., 13 (1), 48-60. DOI: https://doi.org/10.1038/nrcardio.2015.124
Schwertani A., Choi H.Y. (2018). HDLS and the pathogenesis of atherosclerosis. Cur. Opin. Cardiol., 33 (3), 311-316. DOI: https://doi.org/10.1097/HCO.0000000000000508
Shalhoub J., Sikkel M.B., Davies K.J., et al. (2014). Systems biology of human atherosclerosis. Vasc. Endevasc. Sury., 48 (1), 5-17. DOI: https://doi.org/10.1177/1538574413510628
Sharma G., She Z G., Valenta D.T., et al. (2010). Targenting of macrophage foam cells in atherosclerotic plague using
oligonucleotide functionalized nanoparticles. Nano Life, 1 (3-4), 207-214.
Scharlach C., Kratz H., Weikhorst F., et al. (2015). Synthesis of asid stabilired iron oxide nanoparticles and comparison for targeting atherosclerotic plaques: evaluation by MRI, quantitative MPS and TEM alternative to ambiguous Prussian blue iron staining. Nanomedicine: Nanotechn. Biol. Med., 11, 1085-1095.
Skajaa T., Cormode D.P., Falk E., et al. (2010). High density lipoprotein based contrast agents for multimodal imagine of atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 30 (2), 169-176. DOI: https://doi.org/10.1161/ATVBAHA.108.179275
Skogsberg J., Lundstrom J., Kovacs A., et al. (2018). Transcriptional profiling uncovers a network of cholesterol. PLoS Genet., 4 (3), e1000036.
Spengler R.M., OaKley C.K., Davidson B.L. (2014). Functional microRNAS and target sites are created by lineage specific transposition. Hum. Mol. Genet., 23 (7), 1783-1793. DOI: https://doi.org/10.1093/hmg/ddt569
Sosnovik D.E., Nahrendorf M., Deliolauis N., et al. (2007). Fluorescence tomography and magnatic resonance imaging of megocardial macrophages infiltration in infarcted. Circulation, 115, 1384-1391. DOI: https://doi.org/10.1161/CIRCULATIONAHA.106.663351
Starmans L.W., Burdinskii D., Haex N.P., et al. (2013). Iron oxide nanoparticle micelles (ION micelles) for sensitive magnetic particle imaging and MRI. PLos One, 8 (2), e57335. DOI: https://doi.org/10.1371/journal.pone.0057335
Terashima M., Uchida M., Kosuge H., et al. (2011). Human ferritin cages for imagine vascular macrophages. Biomatherial, 32, 1430-1437. DOI: https://doi.org/10.1016/j.biomaterials.2010.09.029
Trayanova N.A., O'hara T., Bayer J.D., et al. (2012). Computational cardiology: how computer simulation could be used to develop new therapeutic and advance existing ones. Europace, 14 (Suppl. 5), 82-89. DOI: https://doi.org/10.1093/europace/eus277
Truchiya K., Nitta N., Sonoda A., et al. (2012). Evaluation of atherosclerotic lesions using dextran and mannan dextran coated USPIO: MRI analysis and pathological findings. Int. J. Nanomed., 7, 2271-2281.
Vander Volk F.M., van Wijk D.F., Lobatto M.E., et al. (2015). Prednisolone containing liposomes accumulate in human atherosclerotic macrophages upon intravenous administration. Nanomedicine, 11 (5), 1039-1046. DOI: https://doi.org/10.1016/j.nano.2015.02.021
Weissleder R., Nahrendorf M., Pittet M.J. (2014). Imagine macrophages with nanoparticles. Nat. Mater., 13 (2), 125-138. DOI: https://doi.org/10.1038/nmat3780
Wen S., Lin D F., Cui Y., et al. (2014). In vivo MRI detection of carotid atherosclerotic lesions and kidney inflammation in ApoE deficient nice by using LOX 1 targeted iron nanoparticles. Nanomedicine: nanotechnology, Biol.&Med., 10, 639-649. DOI: https://doi.org/10.1016/j.nano.2013.09.009
Wheelock C.E., Wheelock A.M., Kawashima S., et al. (2009). Systems biology approaches and pathway tools for investigating cardiovascular disorders. Mol. Biosyst., 5 (6), 588-602. DOI: https://doi.org/10.1039/b902356a
Winter P.M., Morawski A.M., Caruthers S.D., et al. (2003). Molecular imaging of angiogenesis in early stage atherosclerosis in early stage atherosclerosis with aVB3 integrin targeted nanoparticles. Circulation., 108 (18), 2270-2274. DOI: https://doi.org/10.1161/01.CIR.0000093185.16083.95
Winter P.M., Caruthers S.D., Zhang H., et al. (2008). Antiangiogenic synergism of integrin targeted fumagillin nanoparticles and atorvastatin in atherosclerosis. JACC Cardiovascular Imagine, 1 (5), 624-634. DOI: https://doi.org/10.1016/j.jcmg.2008.06.003
Winter P.M., Caruthers S.D., Allen J.S., et al. (2010). Molecular imagine of angiogenesis therapy in peripheral vascular disease with aVB3 integrin targeted nanoparticles. Magn. Reson. Med., 64 (2), 369-376. DOI: https://doi.org/10.1002/mrm.22447
Yang X., Deignan J.L., Qi N., et al. (2009). Validation of candidate causal genes for obesity that affect shared metabolic pathways and network. Nat. Genet., 41 (4), 415-423. DOI: https://doi.org/10.1038/ng.325
Yilmaz A., Dengler M.A., van der Kulp H., et al. (2013). Imaging of miocardial infarction using ultrasmall superparamagnetic iron oxide nanoparticles: a human study using MRI approach. Europ. Heart J., 34, 462-475. DOI: https://doi.org/10.1093/eurheartj/ehs366
Zhang X.Q., Even Or O., Xu X., et al. (2015). Nanoparticles containig a liver X receptor agonist inhibit inflammation and atherosclerosis. Adv. Healthe Mater., 4 (2), 228-236. DOI: https://doi.org/10.1002/adhm.201400337
Zhang L., Chen J.G., Zhao Q. (2015). Regulatory roles of Alu trancript on gene expression. Exp. Cell. Res., 338 (1), 113-118. DOI: https://doi.org/10.1016/j.yexcr.2015.07.019
Zhang L., Zu Y., Dhanasekaza S., et al. (2017). Detection and treatment of atherosclerosis using nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 9 (1), 10.1002. DOI: https://doi.org/10.1002/wnan.1412
Zheng W., Hnang R., Jiang B., et al. (2016). Detection and treatment of atherosclerosis research model based on microfluidics. Small., 12, 2022-2034. DOI: https://doi.org/10.1002/smll.201503241
Zhu M.T., Wang B., Wang Y., et al. (2011). Endothelial dyfunction and inflammation induced by iron exide nanoparticle exposure: risk factors for early atherosclerosis. Toxicol Left., 203 (2), 162-171. DOI: https://doi.org/10.1016/j.toxlet.2011.03.021
Calkin A. and Tontonoz P. (2010). LXR signaling pathways and atherosclerosis/ Arterioscler Thromb Vasc Biol., Aug; 30(8).
Joseph SB, McKilligin E, Pei L, et al. (2002). Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci USA, 99: 7604-7609.
Levin N, Bischoff ED, Daige CL et al. (2005). Macrophage liver X receptor is required for antiatherogenic activity of LXR agonists. Arterioscler Thromb Vasc Biol., 25, 135-142. DOI: https://doi.org/10.1161/01.ATV.0000150044.84012.68
Joseph SB, Castrillo A, Laffitte BA et al. (2003). Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med., 9: 213-219.
Glass CK, Witztum JL. (2001). Atherosclerosis. The road ahead Cell., 104:503-516.
Downloads
Published
How to Cite
Issue
Section
License
Journal Medical Informatics and Engineering allows the author(s) to hold the copyright without registration
The majority of Medical Informatics and Engineering Open Access journals publish open access articles under the terms of the Creative Commons Attribution (CC BY) License which permits use, distribution and reproduction in any medium, provided the original work is properly cited. The remaining journals offer a choice of licenses.
This journal is available through Creative Commons (CC) License CC-BY 4.0