CHANGES IN THE PROCESSES OF ENERGY PROVIDING OF NEUTROPHILS IN RATS WITH PERIODONTITIS ON THE BACKGROUND OF HYPER- AND HYPOTHYROIDISM

Authors

  • V. V. Shcherba І. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY
  • T. Ya. Yaroshenko І. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY
  • A. I. Bandas І. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY
  • M. M. Korda І. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY

DOI:

https://doi.org/10.11603/mcch.2410-681X.2019.v.i3.10556

Keywords:

periodontitis, energy-supplying oxidation, thyroid dysfunction

Abstract

Introduction. Inflammatory periodontal diseases are one of the most urgent problems of dentistry that have social significance. Along with the known concepts of their pathogenesis, considerable attention is paid to the activation of peroxide oxidation of lipids, which may interfere with the oxidation of substrates with dehydrogenases and the transport of electrons along the respiratory chain, causing the separation of respiration and oxidative phosphorylation.

The aim of the study – to investigate the processes of energy providing of neutrophils in rats with periodontitis without comorbidities and against the background of hyper- and hypothyroidism.

Research Methods. The study was performed on white male rats, in which periodontitis, periodontitis on the background of hyperthyroidism and periodontitis on the background of hypothyroidism were modeled. In the mitochondrial fraction of the neutrophils population, the succinate dehydrogenase and cytochrome oxidase activity were determined. The number of blood neutrophils with reduced transmembrane mitochondrial potential was determined by flow cytometry using a set of MitoScreen reagents (BD Pharmigen, USA).

Results and Discussion. Succinate dehydrogenase activity in mitochondria of neutrophils of rats with simulated periodontitis decreased by 16.3 % (p<0.001), with simulated periodontitis on the background of hyperthyroidism – by 40 % (p<0.001), with a periodontitis simulated with hypothyroidism – by 26.7 % (p<0.001) vs the index of the control group. Concerning end-stage enzyme of the respiratory chain of mitochondria – cytochrome oxidase, under the condition of periodontitis without concomitant pathology, the activity of enzyme in mitochondria of rat neutrophils significantly did not change. Experimental periodontitis on the background of hyperthyroidism is accompanied by a decrease in cytochrome oxidase activity by 15.2 % (p<0.01), and in hypothyroidic rats – by 16.2 % (p<0.001) vs the control group. Investigation of mitochondrial transmembrane potential (ΔΨm) of blood neutrophils showed that in rats with simulated periodontitis, the percentage of blood neutrophils with reduced ΔΨm increased by 51.6 % (p<0.001), with simulated periodontitis in the background of hyperthyroidism – 2.4 times (p<0.001), with the simulated periodontitis in the hypothyroidism background – 1.8 times (p<0.001) vs the control group.

Conclusion. Modeling periodontitis against a background of thyroid dysfunction is accompanied by a possible inhibition of processes of energy-supplying oxidation, as indicated by decreasing succinate dehydrogenase and cytochrome oxidase activity in mitochondria of blood neutrophils, both under conditions of hyperthyroidism and hypothyroid conditions.

References

Sakvarelidze, I. (2014). Rol svobodno-radikalnogo okisleniya i antioksidantnoy zashchity v razvitii vos­palitelnykh protsessov v parodonte v zhenskoy populyatsii [The role of free radical oxidation and antioxidant protection in the development of inflammatory processes in the periodontium in the female population]. Aktualnye voprosy zhenskogo Zdorovya – Topical Women's Health Issues, 5, 64-76 [in Russian].

Uspenskaya, O.A. (2017). Izmeneniya biokhi­micheskikh pokazateley krovi pri lechenii bystropro­gressiruyushchego parodontita [Changes in blood bio­chemical parameters in the treatment of rapidly pro­gressive periodontitis]. Problemy stomatologii – Dental Problems, 13 (2), 33-38 [in Russian].

Saveleva, N.N. (2015). Sostoyanie sistemy perekisnogo okisleniya lipidov i antioksidantnoy zashchity u bolnykh khronicheskim generalizovannym parodontitom I-II stepeni tyazhesti, sochetayushchegosya s parazitozami [The state of the system of lipid peroxidation and antioxidant protection in patients with chronic generalized periodontitis I-II severity, combined with parasitosis]. Journal of Education, Health and Sport, 5 (12), 465-476 [in Russian].

Almerich-Silla, J.M., Montiel-Company, J.M., Pastor, S., Serrano, F., Puig-Silla, M. & Dasi, F. (2015). Oxidative stress parameters in saliva and its association with periodontal disease and types of bacteria. Dis. Markers., Article ID 653537.

Lykhatskyi, P.H., Fira, L.S. & Honskyi, Ya.I. (2017). Dynamika zmin markeriv bioenerhetychnykh protsesiv ta tsytolizu u shchuriv pislia urazhennia nitrytom natriiu na tli tiutiunovoi intoksykatsii [Dynamics of changes of markers of bioenergetic processes and cytolysis in rats after damage by sodium nitrite against the background of tobacco intoxication]. Visnyk problem biolohii i medy­tsyny – Bulletin of Biology and Medicine, 2 (136), 147-152 [in Ukrainian].

Rutska, A.V. & Krynytska, I.Ya. (2018). The changes of bioenergetics processes in rats of different sex and age in case of tobacco smoke and monosodium glutamate affection. International Journal of Medicine and Medical Research, 2 (4), 79-86.

Moyseeva, E.G. (2008). Metabolycheskyy gomeostaz i imunnaya reaktivnost organizma v dinamike vospaleniya v tkanyakh parodonta [Metabolic homeostasis and immune reactivity of the organism in the dynamics of inflammation in periodontal tissues]. Extended abstract of Doctor’s thesis. Sumy: SumSU [in Russian].

Ratushnenko, V.O. (2010). Funktsionalna rol tiol-dysulfidnoi systemy pry eksperymentalnomu hipo- i hipertyreozi [Functional role of thiol-disulphide system in experimental hypo- and hyperthyroidism]. Odeskyi medychnyi zhurnal – Odesa Medical Journal, 2 (118), 17-20 [in Ukrainian].

European convention for the protection of vertebrate animals used for experimental and other scientific purposes. (1986). Council of Europe. Strasbourg, 123, 52.

Neiko, Ye.M., Herych, P.R., Ostrovskyi, M.M. & Tomashchuk, L.M. (2010). Kysenzalezhni funktsii faho­tsytiv u khvorykh na khronichne obstruktyvne zakhvo­riuvannia lehen [Oxygen dependent phagocyte function in patients with chronic obstructive pulmonary disease]. Zdobutky klinichnoi i eksperymentalnoi medytsyny – Achievements of Clinical and Experimental Medicine, 1, 100-104 [in Ukrainian].

Voloshchuk, O.N. & Marchenko, M.M. (2013). Enzimaticheskaya aktivnost komponentov sistemy ener­goobespecheniya mitokhondriy leykotsitov krovi v dinamike rosta kartsinomy Gerena [Enzymatic activity of the components of the energy supply system of mitochondria of blood leukocytes in the growth dynamics of Guerin's carcinoma]. Sibirskiy onkologicheskiy zhurnal – Siberian Oncology Journal, 6 (60), 36-39 [in Russian].

Eshchenko, N.D. & Volskiy, G.G. (1982). Opre­delenie kolichestva yantarnoi kisloty i aktivnosti suktsinatdegidrogenazy. Metody biokhimicheskikh issledovaniy (lipidnyy i energeticheskiy obmen) [Determination of the amount of succinic acid and succinate dehydrogenase activity. Methods of biochemical research (lipid and energy metabolism)]. Leningrad: Leningrad University Publishing House, 207-212 [in Russian].

Krivchenkova, R.S. (1977). Opredelenie aktiv­nosti tsitokhromoksidazy v suspenzii mitokhondrii. Sovremennye metody v biokhimii [Determination of cytochrome oxidase activity in mitochondrial suspension. Modern methods in biochemistry]. Orekhovich, V.N., & Krivchenkova, R.S. (Eds.). Moscow: Meditsina [in Russian].

Chechina, O.E., Ryazantseva, N.V., & Sazono­va, E.V. (2011). Mekhanizmy apoptoza limfotsitov pri kleshchevom entsefalite [Mechanisms of lymphocyte apoptosis in tick-borne encephalitis]. Byulleten sibirskoy meditsiny – Bulletin of Siberian Medicine, 6, 61-66 [in Russian].

Voloshchuk, O.M., Marchenko, M.M., & Feren­chuk, E.O. (2012). NADN-dehidrohenazna aktyvnist leikotsytiv krovi shchuriv z transplantovanoiu kartsynomoiu herena v dynamitsi onkohenezu [NADN-dehydrogenase activity of leukocyte blood in rats with transgenic carcinoma of the heron in the dynamics of oncogenesis]. Naukovyi visnyk Chernivetskoho universytetu. Biolohiia (Biolohichni systemy) – Scientific Herald of Chernivtsi University. Biology (Biological Systems), 4 (4), 363-366 [in Ukrainian].

Biliuk, A., Nehelia, A. & Harmanchuk, L. (2016). Aktyvnist tsytokhromoksydazy ta suktsynatdehidrohenazy v pervynnii kulturi pereshchepliuvanoi kartsynomy lehen Liuis na riznykh etapakh rostu pukhlyny [The activity of cytochrome oxidase and succinate dehydrogenase in the primary culture of Lewis lung transfusion carcinoma at different stages of tumor growth]. Visnyk Kyivskoho natsionalnoho universytetu imeni Tarasa Shevchenka – Bulletin of the Taras Shevchenko National University of Kyiv, 2 (21), 81-85 [in Ukrainian].

Vasilenko, O.V., Bodnar, O.I., Viniarskaya, G.B., Sinyuk, Yu.V. & Grubinko, V.V. (2014). Energeticheskiy i azotistyy obmen uchlorella vulgaris beij. (chlorophyta) pod vliyaniem selenita natriya [Energy and nitrogen metabolism of uchlorella vulgaris beij. (chlorophyta) under the influence of sodium selenite]. Algologiya – Algology, 24 (3), 297-301 [in Russian].

Vidali, S., Cheret, J., Giesen, M., Haeger, S., & Alam, M. (2016). Thyroid hormones enhance mitochondrial function in human epidermis. J. Invest. Dermatol., 136 (10), 2003-2012.

Alimova, I.L., Romankova, T.M. & Sukhorukov, V.S. (2012). Narusheniya kletochnogo energoobmena pri zabolevaniyakh endokrinnoy sistemy u detey [Disorders of cellular energy metabolism in endocrine diseases in children]. Rossiiskiy vestnik perinatologii i pediatrii – Russian Bulletin of Perinatology and Pediatrics, 4 (2), 94-98 [in Russian].

Lukyanova, L.D., Dudchenko, A.M., Tsybina, T.A., & Germanova, E.L. (2007). Regulyatornaya rol mito­khondrialnoy disfunktsii pri gipoksii i yeye vzaimodeystviye s transkriptsionnoy aktivnostyu [The regulatory role of mitochondrial dysfunction during hypoxia and its interaction with transcriptional activity]. Vestnik Rossiyskoy AMN – Bulletin of Russian AMS, 2, 3-10 [in Russian].

Lobyreva, O.V. (2010). Tireoidnyi status i ego vliyanie na aktivnost okislitelnykh fermentov [Thyroid status and its effect on the activity of oxidative enzymes]. Meditsina i zdravookhraneniye – Medicine and Health Care, 201, 259-263 [in Russian].

Ovsepyan, L.M., Kazaryan, G.S. & Zakharyan, G.V. (2009). Rol aktivnykh form kisloroda v mitokhondriiakh [The role of reactive oxygen species in mitochondria]. Meditsinskaya nauka Armenii NAN RA – Medical Science of Armenia NAS RA, 2, 3-10 [in Russian].

Wang, X. (2001). The expanding role of mito­chondria in apoptosis. Genes Dev., 15, 22, 2922-2933.

Marushchak, M.I. (2017). Mitokhondrialni mekhanizmy apoptozu pry hostromu ushkodzhenni lehen v eksperymenti [Mitochondrial mechanisms of apoptosis in acute lung injury in the experiment]. Visnyk naukovykh doslidzhen – Bulletin of Scientific Research, 1, 121-124 [in Ukrainian].

Krynytska, I.Ya. (2012). Rol aktyvnykh form kysniu u rozvytku hepatopulmonalnoho syndromu v eksperymenti [The role of reactive oxygen species in the development of hepatopulmonary syndrome in the experiment]. Zdobutky klinichnoi i eksperymentalnoi medytsyny – Achievements of Clinical and Experimental Medicine, 1, 72-76 [in Ukrainian].

Circu, M.L. & Aw T.Y. (2010). Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med., 48, 749-762.

Krynytska, I.Ya. (2013). Riven apoptychno ta nekrotychno zminenykh monotsytiv ta alveoliarnykh makrofahiv za umovy eksperymentalnoho hepatopulmonalnoho syndromu [Level of apoptotic and necrotizing altered monocytes and alveolar macrophages under experimental hepatopulmonary syndrome]. Svit medy­tsyny ta biolohii – World of Medicine and Biology, 2, 46-49 [in Ukrainian].

Pavon, N., Aranda, A., Garcıa, N., Hernandez-Esquivel, L., & Chavez, E. (2009). In hyperthyroid rats octylguanidine protects the heart from reperfusion damage. Endocrine, 35, 6, 158-165.

Wu, S., Zhou, F., Zhang, Z. & Xing, D. (2011). Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins. FEBS J., 278, 941-954.

Franco, M., Chavez, E., & Perez-Mendez, O. (2011). Pleiotropic effects of thyroid hormones: Learning from hypothyroidism. Journal of Thyroid Research, 17. Article ID 321030.

Published

2019-11-07

How to Cite

Shcherba, V. V., Yaroshenko, T. Y., Bandas, A. I., & Korda, M. M. (2019). CHANGES IN THE PROCESSES OF ENERGY PROVIDING OF NEUTROPHILS IN RATS WITH PERIODONTITIS ON THE BACKGROUND OF HYPER- AND HYPOTHYROIDISM. Medical and Clinical Chemistry, (3), 28–36. https://doi.org/10.11603/mcch.2410-681X.2019.v.i3.10556

Issue

Section

ORIGINAL INVESTIGATIONS