ASPARTATE AMINOTRANSFERASE ACTIVITY IN BLOOD SERUM IN THE DYNAMICS OF MECHANICAL TRAUMA OF VARIOUS LOCATIONS, COMPLICATED BY ACUTE BLOOD LOSS

Authors

DOI:

https://doi.org/10.11603/mcch.2410-681X.2025.i4.15927

Keywords:

traumatic brain injury; blunt abdominal trauma; skeletal trauma; acute blood loss; aspartate aminotransferase.

Abstract

Introduction. Trauma is one of the leading causes of mortality and morbidity all over the world. Today, it’s thought that the increase in blood serum aspartate aminotransferase (AST) activity is linked to systemic disorders that are different from parenchymal liver diseases. However, the influence of mechanical trauma of various locations and acute blood loss on the dynamics of blood serum AST activity has not been sufficiently studied, which required special research. The Aim of the Study is to determine blood serum AST activity in the dynamics of traumatic brain injury (TBI), blunt abdominal trauma (BAT), and skeletal trauma (ST) complicated by acute blood loss. Research Methods. Experiments were conducted on white mature male Wistar line rats. Under conditions of thiopental sodium anesthesia, rats were modeled with TBI, BAT, and ST, standardized by mortality rate. In some groups of rats, acute blood loss in the amount of 1,5 % of body weight was additionally simulated. The rats were taken out of the experiment after 3, 7, 14, 21, and 28 days of the post-traumatic period. AST activity was determined in blood serum. Results and Discussion. Modeling of isolated TBI, BAT and ST are accompanied by an increase in systemic membranopathy, accompanied by a significant increase in blood serum AST activity during the period of early and late manifestations of traumatic disease compared to the control. Under conditions of BAT, the indicator is significantly higher compared to other study groups after 7, 14, 21, and 28 days of the post-traumatic period. Complication of simulated injuries with acute blood loss in the amount of 1,5 % of body weight compared to the control group causes a statistically significant increase in blood serum AST activity compared to injured rats with the same trauma: after TBI and acute blood loss – at 3, 7, 21, and 28 days of the post-traumatic period, after BAT and acute blood loss – at all time points of the post-traumatic period, after ST and acute blood loss – at 3-21 days. Starting from the 7th day of the experiment, blood serum AST activity is significantly higher in the context of BAT and acute blood loss compared to other study groups. Conclusions. Mechanical trauma of various localization causes a significant increase in blood serum AST activity during the early and late stages of traumatic disease, which is significantly exacerbated by additional acute blood loss and prevails in rats with BAT.

References

Гур’єв С. О., Нацевич Р. О., Василов В. В. Клінічна стандартизована оцінка тяжкості пошкодження внаслідок ДТП на догоспітальному і ранньому госпітальному етапі надання медичної допомоги в умовах притрасової лікарні. Вісник морфології. 2017. Т. 23. № 1. С. 135–139. URL: https://morphology-journal.com/ index.php/journal/article/view/35

Гайда І. М., Бадюк М. І., Сушко Ю. І. Особливості структури та перебігу сучасної бойової травми у військовослужбовців Збройних сил України. Патологія. 2018. Т. 15. № 1. С. 73–76. DOI: https://doi.org/10.14739/ 2310-1237.2018.1.129329

Muneer P. M. A., Chandra N., Haorah J. Interactions of Oxidative Stress and Neurovascular Inflammation in the Pathogenesis of Traumatic Brain Injury. Molecular Neurobiology. 2014. Vol. 51. № 3. P. 966–979. DOI: https://doi.org/10.1007/s12035-014-8752-3.

Soud D. E. M., Amin O. A. I., Amin A. A. I. New era “soluble triggering receptor expressed on myeloid cells-I” as a marker for early detection of infection in trauma patients. Egyptian Journal of Anaesthesia. 2011. Vol. 27. № 4. Р. 267–72. DOI: https://doi.org/ 10.1016/j.egja.2011.07.002 5. Mukherjee K., Bhattacharjee D., Choudhury J. R., Bhattacharyya R. Association of Serum Biomarkers with the Mortality of Trauma Victims in a Level-1 Trauma Care Centre of Eastern India. Bulletin of emergency and trauma. 2022. Vol. 10. № 1. Р. 33–39. DOI: https://doi.org/ 10.30476/BEAT.2022.89155.1222

Suciu A., Abenavoli L., Pellicano R., Luzza F., Dumitrascu D. L. Transaminases: oldies but goldies : A narrative review. Minerva Gastroenterol Dietol. 2020. Vol. 66. № 3. Р. 246–251. https://doi.org/10.23736/ s1121-421x.20.02660-4

Sookoian S., Pirola C. J. Liver enzymes, metabolomics and genome-wide association studies: from systems biology to the personalized medicine. World journal of gastroenterology. 2015. Vol. 21. № 3. Р. 711–725. DOI: https://doi.org/10.3748/wjg.v21.i3.711

Сікіринська Д. О., Гудима А. А., Господарський І. Я., Походун К. А. Вплив краніоскелетної травми, ускладненої крововтратою, на активність процесів цитолізу та ендогенної інтоксикації в ранній період у щурів з різною резистентністю до гіпоксії. Шпитальна хірургія. Журнал імені Л. Я. Ковальчука. 2021. № 2. С. 33–40. DOI: https://doi.org/10.11603/ mcch.2410-681X.2021.i2.12238

Sanfilippo F., Veenith T., Santonocito C., Vrettou C. S., Matta B. F. Liver function test abnormalities after traumatic brain injury: Is hepato-biliary ultrasound a sensitive diagnostic tool? British journal of anaesthesia. 2014. Vol. 112. №. 2. Р. 298–303. DOI: https://doi.org/ 10.1093/bja/aet305.

Izhytska N. V., Sushko Y. I., Hudyma A. A., Pisklivets T. I., Smahlii Z. V., Dzhavadova N. Impact of cranioskeletal trauma on the development of endogenous intoxication syndrome in rats of different ages. Wiadomości Lekarskie. 2024. Vol. 77. № 8. P. 1603–1610. DOI: https://doi.org/10.36740/wlek202408110.

Особливості функціонального стану печінки за умов краніоскелетної травми, поєднаної з тупою травмою живота / Т. Ю. Угляр, М. І. Бадюк, А. А. Гудима та ін. Світ медицини та біології. 2023. № 1. С. 238–242. DOI: https://doi.org/10.26724/2079-8334-2023-1- 83-238-242

Botros M., Sikaris K. A. The de ritis ratio: The test of time. Clinical biochemist. Reviews. 2013. Vol. 34. № 3. Р. 117–130.

Tsai C.-H., Hsieh T.-M., Hsu S.-Y., Hsieh C.-H. A High De Ritis Ratio is Associated with Mortality in Adult Trauma Patients. Risk Management and Healthcare Policy. 2023. Vol. 16. P. 879–887. DOI: https://doi.org/ 10.2147/RMHP.S409345

Meng Q. Y., Wang T. Y., Zhu Y. Q., Xu, Y. Q. Establishment of animal model of hepatic stress injury induced by traumatic brain injury. J. Trad. Chin. Med. Univ. Hunan. 2010. Р. 3–632.

de Castro M. R. T., Ferreira A. P. O., Busanello G. L., da Silva L. R. H., da Silveira Junior M. E. P., Fiorin F. D. S., Arrifano G., Crespo-López M. E., Barcelos R. P., Cuevas M. J., Bresciani G., González-Gallego J., Fighera M. R., Royes L. F. F. Previous physical exercise alters the hepatic profile of oxidative-inflammatory status and limits the secondary brain damage induced by severe traumatic brain injury in rats. The Journal of physiology. 2017. Vol. 595. Р. 6023–6044. DOI: https://doi.org/ 10.1113/JP273933

Sabet N., Soltani Z., Khaksari M. Multipotential and systemic effects of traumatic brain injury. Journal of neuroimmunology. 2021. Vol. 357. Р. 577619. DOI: https://doi.org/10.1016/j.jneuroim.2021.577619

Villapol S. Consequences of hepatic damage after traumatic brain injury: Current outlook and potential therapeutic targets. Neural regeneration research. 2016. Vol. 11. № 2. Р. 226–227. DOI: https://doi.org/ 10.4103/1673-5374.177720

Bilgic I., Gelecek S., Akgun A. E., Ozmen M. M. Predictive value of liver transaminases levels in abdominal trauma. The American Journal of Emergency Medicine 2014. Vol. 32. № 7. P. 705–708. DOI: https://doi.org/ 10.1016/j.ajem.2014.03.052

Schuijt T. J., van der Poll T., de Vos W. M., Wiersinga W. J. The intestinal microbiota and host immune interactions in the critically ill. Trends Microbiol. 2013. Vol. 21. Р. 221–229. DOI: https://doi.org/10.1016/ j.pep.2015.05.010

Левчук Р. Д., Покришко О. В., Борис Р. М., Дзецюх Т. І. Видовий склад та рівень обсіменіння мікроорганізмами перитонеального ексудату в ранній період після моделювання скелетної, черепно-мозкової та поєднаної травм. Актуальні питання транспортної медицини. 2015. № 4/2. С. 148–156.

Jiang X., Chang H., Zhou Y. Expression, purification and preliminary crystallographic studies of human glutamate oxaloacetate transaminase 1 (GOT1). Protein Expression and Purification. 2015. Vol. 113. P. 102–106. DOI: https://doi.org/10.1016/j.pep.2015.05.010

Reintam Blaser A., Padar M., Mändul M., Elke G., Engel C., Fischer K., Giabicani M., Gold T., Hess B., Hiesmayr M., Jakob S. M., Loudet C. I., Meesters D. M., Mongkolpun W., Paugam-Burtz C., Poeze M., Preiser J. C., Renberg M., Rooijackers O., Tamme K., … Starkopf J. Development of the Gastrointestinal Dysfunction Score (GIDS) for critically ill patients – A prospective multicenter observational study (iSOFA study). Clinical Nutrition. 2021. Vol. 40. № 8. P. 4932–4940. DOI: https://doi.org/ 10.1016/j.clnu.2021.07.015

Published

2026-02-04

How to Cite

Levchuk, R. D. (2026). ASPARTATE AMINOTRANSFERASE ACTIVITY IN BLOOD SERUM IN THE DYNAMICS OF MECHANICAL TRAUMA OF VARIOUS LOCATIONS, COMPLICATED BY ACUTE BLOOD LOSS. Medical and Clinical Chemistry, (4), 103–112. https://doi.org/10.11603/mcch.2410-681X.2025.i4.15927

Issue

Section

ORIGINAL INVESTIGATIONS