MORPHOLOGICAL CHARACTERISTICS OF YOUNG SHOOTS OF ASPARAGUS OFFICINALIS L. AND DETERMINATION OF THEIR AMINO ACID COMPOSITION
DOI:
https://doi.org/10.11603/mcch.2410-681X.2025.i4.15924Keywords:
asparagus officinalis; phytocenoses; shoots; amino acids; gas chromatography-mass spectrometry; morphological features.Abstract
Introduction. Garden asparagus (Asparagus officinalis L.) is anedible, ornamental and medicinal plant with antioxidant, diuretic and hypotensive activity. The Aim of the Study. Determination of morphological features and analyze the qualitative composition and quantitative content of amino acids in the young shoots of Asparagus officinalis, gathered in Ternopil region. Research Methods. The object of the research was the young shoots of Asparagus, which were collected at the beginning vegetation period and dried at a temperature of 25–35 °C. The composition of amino acids was analyzed using gas chromatographic-mass spectrometric method. Results and Discussion. We analyzed the morphologikal features of young shoots of Asparagus. In the studied raw material, 11 free and 13 bound amino acids were identified. The absence of L-glycine and L-tyrosine in the free state was noted. The total content of free amino acids was 1,22 mg/g, while the bound ones were 78,85 mg/g (of the total content of these compounds identified in the plant). Conclusions. The qualitative composition and quantitative content of amino acids in young shoots of Asparagus officinalis have been established. Among the detected amino acids the largest amound share is L-leucine (12,45 mg/g), L-proline (11,36 mg/g) and L-phenylalanine (9,7 mg/g). In the free state, L-valine, L-lysine, L-proline and L-aspartic acid predominated.
References
Begum A., Sindhu K., Giri K. [at al.]. Pharmacognostical and physio-chemical evaluation of Indian Asparagus officinalis Linn family Lamiaceae. Int. J. Pharmacogn. Phytochem. Res. 2017. № 9. P. 327–336.
Pegiou E, Mumm R, Acharya P. et al. Green and White Asparagus (Asparagus officinalis): A Source of Developmental, Chemical and Urinary Intrigue. Metabolites. 2019. Dec 25. 10 (1). P. 17. DOI: 10.3390/ metabo10010017
Булгаков П. О., Прісс О. П. Зберігання спаржі з використанням захисних покриттів і пакування. Information activity as a component of science development: The 13th International scientific and practical conference, April 4–7, 2023. Едмонтон, Канада : International Science Grou,. 2023. P. 21.
Altunel Tayyibe Açikgöz. Morphological and habitat characteristics of Asparagus (Asparagus officinalis L.) and socio-economic structure of producers. 2021. Р. 1092–1099.
Bratkov V. M., Shkondrov A. M., Zdraveva P. K., Krasteva I. N. Flavonoids from the Genus Astragalus: Phytochemistry and Biological Activity. Pharmacogn Rev. 2016. № 10 (19). Р. 11–32.
Wang C., Cheng D., Zhao D. et al. Chemical constituents of Asparagus officinalis. Chemistry of Natural Compounds. 2023. № 59 (2). Р. 410–411.
Фармацевтична енциклопедія / гол ред. ради В. П. Черних. 3-тє вид., переробл. і доповн. Київ : МОРІОН, 2016. 1952 с.
Івченко Т. В., Лялюк О. С. Вплив гібрида і способів вирощування Asparagus officinalis L. на строки надходження спаржі в умовах Лісостепової зони України. Аграрні інновацїі. Меліорація, землеробство, рослинництво. 2022. № 14. С. 44–50.
Івченко Т. В., Лялюк О. С. Ефективність короткострокового зберігання спаржі зеленої. Аграрні інновацїі. 2022. № 11. С. 32–40.
Chen W. P. et al. Microscale analysis of amino acids using gas hromatography – massspectrometry after methyl chloroformate derivatization. Journal of hromatography. 2010. 878 (24). P. 2199–2208. DOI: https://doi.org/10.1016/j.jchromb.2010.06.027
Vancompernolle B., Croes K., Angenon G. Optimization of a gas chromatography-mass spectrometry method with methyl chloroformate derivatization for quantification of amino acids in plant tissue. Journal of Chromatography. 2016. Т. 1017. P. 241–249.
Nguyen T. V., Alfaro A. C., Young T. Protocol for Methyl ChloroFormate (MCF) Derivatization of Extracted Metabolites from Marine Bivalve Tissues. 2018. P. 1–2.
Kolukisaoglu Ü. D-amino acids in plants: sources, metabolism, and functions. International Journal of Molecular Sciences. 2020. 21 (15). 5421 p.
Umumararungu T., Gahamanyi N., Mukiza J. et al. Proline, a unique amino acid whose polymer, polyproline II helix, and its analogues are involved in many biological processes : a review. Amino acids. 2024. 56 (1). P. 50. DOI: https://doi.org/10.1007/s00726-024-03410-9
Lyu H., Bao S., Cai L. et al. The role and research progress of serine metabolism in tumor cells. Front Oncol. 2025. Apr 8.15. P. 1509662. DOI: 10.3389/ fonc.2025.1509662
He L., Ding Y., Zhou X. et al. Serine signaling governs metabolic homeostasis and health. Trends in endocrinology and metabolism: TEM. 2023. 34 (6). P. 361–372. DOI: https://doi.org/10.1016/j.tem.2023.03.001
Holowaty M. N. H., Lees M. J., Abou Sawan S. et al. Leucine ingestion promotes mTOR translocation to the periphery and enhances total and peripheral RPS6 phosphorylation in human skeletal muscle. Amino acids. 2023. 55 (2). P. 253–261. DOI: https://doi.org/10.1007/ s00726-022-03221-w
D’Hulst G., Masschelein E., De Bock K. Resistance exercise enhances long-term mTORC1 sensitivity to leucine. Molecular metabolism. 2022. 66. P. 101615. DOI: https://doi.org/10.1016/ j.molmet.2022.101615
Wang C., Peng Y., Zhang Y., Xu J., Jiang S., Wang L., Yin Y. The biological functions and metabolic pathways of valine in swine. Journal of animal science and biotechnology. 2023. 14 (1). P. 135. DOI: https://doi.org/ 10.1186/s40104-023-00927-z
Du C., Liu W. J., Yang J. et al. The Role of Branched-Chain Amino Acids and Branched-Chain α-Keto Acid Dehydrogenase Kinase in Metabolic Disorders. Frontiers in nutrition. 2022. 9. P. 932670. DOI: https://doi.org/10.3389/fnut.2022.932670
Yu D., Richardson N. E., Green C. L. et al. The adverse metabolic effects of branched-chain amino acids are mediated by isoleucine and valine. Cell metabolism. 2022. 33 (5). P. 905–922.e6. DOI: https://doi.org/ 10.1016/j.cmet.2021.03.025
Shnitko T. A., Taylor S. C., Stringfield S. J. et al. Acute phenylalanine/tyrosine depletion of phasic dopamine in the rat brain. Psychopharmacology. 2016. 233 (11). P. 2045–2054. DOI: https://doi.org/10.1007/ s00213-016-4259-0
Shnitko T. A., Taylor S. C., Stringfield S. J. et al. Acute phenylalanine/tyrosine depletion of phasic dopamine in the rat brain. Psychopharmacology. 2016. 233 (11), P. 2045–2054. DOI: https://doi.org/10.1007/ s00213-016-4259-0//
Liu W., Sun M., He Y. et al. Quality Evaluation of Asparagus officinalis by Profile of Amino Acids and Mineral Elements in Different Parts Combined with Chemometrics Methods. Chemistry & biodiversity. 2024. 21 (3). P. e202301754. DOI: https://doi.org/10.1002/ cbdv.202301754
Gębczyński P. Content of selected antioxidative compounds in green asparagus depending on processing before freezing and on the period and conditions of storage. Polish Journal of Food and Nutrition Sciences. 2007. 57. P. 209–214.
Słupski J., Korus A., Lisiewska Z., Kmiecik W. Content of amino acids and the quality of protein in as-eaten green asparagus (Asparagus officinalis L.) products. International Journal of Food Science and Technology. April 2010. Vol. 45. Is. 4. P. 733–739. DOI: https://doi.org/10.1111/j.1365-2621.2010.02193.x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Medical and Clinical Chemistry

This work is licensed under a Creative Commons Attribution 4.0 International License.