CONTENT OF GROWTH FACTORS AND HIF-1Α IN THE WOUND BED OF RATS WITH METABOLIC SYNDROME

Authors

DOI:

https://doi.org/10.11603/mcch.2410-681X.2025.i4.15915

Keywords:

glutamate-induced obesity; full-thickness excised planar wounds; carbopol gel with melanin; growth factors.

Abstract

Introduction. The process of skin wound healing begins immediately after injury and is a dynamic and complex biological process. The reasons why wounds do not close are still largely unclear. In this regard, growth factors, a class of signaling molecules that are essential for the regulation of a variety of cellular processes, including proliferation, differentiation, angiogenesis, survival, inflammation, and tissue repair or fibrosis, have attracted the most attention. The Aim of the Study. To determine the concentrations of growth factors in the skin during the healing of fullthickness excisional flat wounds in rats of different sexes with glutamate-induced obesity, provided that they were treated with carbopol gel with melanin. Research Methods. Newborn males and females were randomly divided into 6 groups. Three groups – non-obese and three groups with glutamate-induced obesity. Simulation of wounds on the dorsal surface was performed under general anesthesia using sodium thiopental at a dose of 60 mg/kg of animal weight. In the 6th group of animals with glutamate-induced obesity, wounds were treated daily with carbopol gel (0,5 %) – a universal thickener to give a solution a jelly-like consistency (Carbopol 980) with melanin (0,1 %). The level of growth factors was determined using the appropriate reagent sets by indirect enzyme-linked immunosorbent assay (ELISA) according to a standard protocol. Results and Discussion. It was shown that in control rats with glutamate-induced obesity, the concentration of insulin-like growth factor (IGF) increases 1.5 times compared to non-obese controls. In glutamate-induced obesity and the presence of a planar wound, the concentration of this growth factor increases by 1,9 times, and in induced obesity and the presence of a planar wound treated with melanin, the concentration of this factor increases by 1,7 times compared to the corresponding values without obesity. Epidermal growth factor (EGF) concentrations in glutamate-induced obesity also increase, both in control and in flat wound and flat wound treated with melanin, by 1,4, 2,2, and 1,6 times, respectively. It has been shown that in glutamate-induced obesity, the concentration of fibroblast growth factors increases 1,6 times compared to control. In a flat wound and a flat wound treated with melanin, it increases by 2,0 and 1,8 times, respectively. In males and females with glutamateinduced obesity, daily wound treatment with carbopol gel with melanin accelerated wound healing, and this process involved growth factors, the concentration of which significantly increased relative to non-obese controls. Conclusions. In males and females with glutamate-induced obesity, daily wound treatment with carbopol gel with melanin accelerated wound healing and significantly reduced the area of lesions throughout the experiment. Growth factors are involved in this process, the concentration of which increases significantly.

References

Guo S., Dipietro L. A. Factors affecting wound healing. J. DENT. RES. 2010. V. 89. Р. 219–29. DOI: https://doi.org/10.1177/0022034509359125

Reinke J. M., Sorg H. Wound repair and regeneration. Eur. Surg. Res. 2012. № 49. Р. 35–43. DOI: https://doi.org/10.1159/000339613

Hameedaldeen A., Liu J., Batres A., Graves G. S., Graves D. T. FOXO1, TGF-beta regulation and wound healing. Int. J. Mol. Sci 2014. V. 15. P. 16257–16269. DOI: https://doi.org/10.3390/ijms150916257

Matwiejuk M., Myśliwiec H., Chabowski A., Flisiak I. An Overview of Growth Factors as the Potential Link between Psoriasis and Metabolic Syndrome. J Clin Med. 2023. V. 13. № 1. Р. DOI: 10.3390/jcm13010109.

Wang X.-R., Wang W.-J., Yu X., Hua X., Ouyang F., Luo Z.-C. Insulin-Like Growth Factor Axis Biomarkers and Gestational Diabetes Mellitus : A Systematic Review and Meta-Analysis. Front. Endocrinol. 2019. № 10. Р. 444. DOI: 10.3389/fendo.2019.00444

Wang Z., Wang Y., Bradbury N., Bravo C. G., Schnabi B., Di Nardo A. Skin wound closure delay in metabolic syndrome correlates with SCF deficiency in kerationocytes. Sci Rep. 2020. V. 10. № 1. Р. 21732. DOI: 10.1038/s41598-020-78244-y

Keleş M., Türkeli M. İnsülin benzeri büyüme faktörü sistemi ve kanser. Tip Araştirmalari Dergisi. 2005. № 3. Р. 39–43.

Altas A., Kuzu F., Arpaci D., Unal M., Can M., Barut F., Kokturk F., Ilikhan S. U., Bayraktaroglu T. The Clinical Values of Insulin-Like Growth Factor-1 and Insulin- Like Growth Factor Binding Protein-3 Levels in Blood and Thyroid Nodules. Int J Endocrinol. 2017. № 2017. Р 3145234. DOI: 10.1155/2017/3145234.

Çolak R. İnsülin benzeri büyüme faktörleri ve insülin benzeri büyüme faktörü bağlayıcı proteinler. Türkiye Klinikleri Journal of Medical Sciences. 2007. № 3. Р. 10–17.

Harbili S. İnsülin benzeri büyüme faktörleri (IGF): Egzersiz metabolizması ve kas dokusu üzerine etkileri. Genel Tip Dergisi. 2008. № 18. Р. 177–184.

Tamega A. A., Aranha A. M. P., Guiotoku M. M., et al. Associacao entre acrocordons e resistencia a insulina. An Bras Dermatol. 2010. V. 85. № 1. Р. 25–31.

Maaran A. T., Prathiba P. Acanthosis nigricans and skin tags as markers of insulin resistance in non-diabetic obese individuals. J. Evid. Based Med. Healthc. 2020. V. 7. № 6. Р. 270–274. DOI: 10.18410/jebmh/2020/57

Solano F. Photoprotection and Skin Pigmenation: Melanin-Related Molecules and Some Other New Agents Obtained from Natural Sources. Molecules. 2020. V. 25. № 7. Р. 1537. DOI: 10.3390/molecules25071537

Agrawal M. Natural polyphenols based new therapeutic avenues for advanced biomedical applications. Drug Metabolism Reviews. 2015. V. 47. № 4. Р. 1–11.

Taburets O. V., Morgaienko O. O., Kondratyuk T. O., Beregova T. V., Ostapchenko L. I. The Effect of “Melanin-Gel” on the Wound Healing. Research Journal of Pharmaceutical, Biological and Chemical Sciences (RJPBCS). 2016. V. 7. № 3. Р. 2031–2038.

Diaz D. F. Z., Busch L., Kroger M., Klein A. L., Lohan S. B., et al. Significance of melanin distribution in the epidermis for the protective effect against UV light. Scientific Reports. 2024. V. 14. P. 3488.

Табурець О. В., Грінченко O. О., Дворщенко К. О., Верещака В. В., Остапченко Л. І. Вплив меланіну на прооксидантно-оксидантний гомеостаз у сироватці крові за умов різаної рани шкіри шурів. Вісник проблем біології та медицини. 2017. № 1. С. 191–196.

Bernardis L. L., Patterson B. D. Correlation between “Lee index” and carcass fat content in weanling and adult female rats with hypothalamic lesions. J Endocrinol. 1968. № 40. Р. 527–528.

Crowther J. R. The ELISA Guidebook. Totowa, New Jersey : Humana Press Inc., 2001, 436 p.

Bartke A. Growth Hormone and Aging: Updated Review. World J Mens Health. 2019. V. 37. № 1. Р. 19–30. DOI: 10.5534/wjmh.180018

Laron Z. Insulin-like growth factor 1 (IGF-1): A growth hormone. Molecular Pathology. 2001. V. 54. № 5. Р. 311–316. DOI: 10.1136/mp.54.5.311

Tito C., Masciarelli S., Calotti G., Fazi F. EGF receptor in organ development, tissue homeostasis and regeneration. Journal of Biomedical Science. 2025. V. 32. Р. 6952.

Takehara K. Growth regulation of skin fibroblasts. Journal of Dermatological Science. 2000. № 1. Р. S70–S77.

Mokito T., Jinnin M., Muchemwa F. C., et al. Basic fibroblast growth factor stimulates the proliferation of human dermal fibroblasts via the ERK1/2 and JNK pathways. British Journal of Dermatology. 2010. V. 162. № 4. Р. 717–723. DOI: 10.1111/j.1365-2133.2009.09581.x

Massague J. How cells read TGF-ß signals. Nature Rev. Mol. Cell. Biol. 2000. № 1. Р. 169–178.

Kale A., Joshi S., Pillai A., Naphade N., Raju M., Nasrallah Mahadik S. P. Reduced cerebrospinal fluid and plasma nerve growth factor in drug-naïve psychotic patients. Schizophrenia Research. 2009. V. 115. №№ 2–3. P. 209–214. DOI: 10.1016/j.schres.2009.07.022

Amo Y., Masuzawa M., Hamada Y., Katsuoka K. Serum concentrations of vascular endothelial growth factor-D in angiosarcoma patients. British Journal of Dermatology. 2004. V. 150. № 1. P. 160–161. DOI: 10.1111/j.1365-2133.2004.05751.x

Pagani A., Kirsch B.M., Hopfner U., Aitzetmueller M. M., Brett E. A., Thor D., Mela P., Machens H. G., Duscher D. Deferiprone Stimulates Aged Dermal Fibroblasts Via HIF-1α Modulation. Aesthetic Surgery Journal. 2020. V. 41. № 4. Р 514–524. DOI: 10.1093/asj/sjaa142

Iyer N. V., Kotch L. E., Agani F., Leung S. W., Laughner E., Wenger R. H., Gassmann M., Gearhart J. D., Lawler A. M., Yu A. Y., Semenza G. L. Cellular and developmental control of O2 homeostasis by hypoxiainducible factor 1 alpha. Genes & Development. 1998. V. 12. № 2. P. 149–162. DOI: 10.1101/gad.12.2.149

Lee J. W., Bae S. H., Jeong J. W., Kim S. H., Kim K. W. Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Experimental and Molecular Medicine. 2004. V. 36. № 1. P. 1–12. DOI: 10.1038/emm.2004.1

Published

2026-02-04

How to Cite

Hrytsevych, N. R., Nikitina, N. S., Stepanova, L. I., Halenova, T. I., & Vereshchaka, V. V. (2026). CONTENT OF GROWTH FACTORS AND HIF-1Α IN THE WOUND BED OF RATS WITH METABOLIC SYNDROME. Medical and Clinical Chemistry, (4), 5–12. https://doi.org/10.11603/mcch.2410-681X.2025.i4.15915

Issue

Section

ORIGINAL INVESTIGATIONS